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ABSTRACT
This paper considers cooperative navigation between a Un-
manned Aerial Vehicle (UAV) in a GNSS-challenged en-
vironment with an Unmanned Ground Vehicle (UGV), and
focuses on the design of the optimal motion of the UGV to
best assist the UAV’s navigation solution. Our approach re-
duces the uncertainty of a UAV’s navigation solution through
the use of radio ranging updates from a cooperative UGV.
In this study, we develop and compare two novel methods
for designing a UGV’s trajectory such that the UAV’s dilu-
tion of precision is reduced. To conduct this study, a simu-
lation environment is used to characterize the performance
of the cooperative navigation between a UAV and a UGV.
The study is conducted to evaluate the positioning accuracy
during common GNSS-challenged scenarios such as: a ve-
hicle in an urban environment and flying against a build-
ing. Using an Ultra Wideband (UWB) radio, the UAV in a
GNSS-challenged environment, an urban canyon, is able to
determine it’s position with the support of a UGV. The use
of a UGV and moving it based on the reduction of dilution
of precision, has shown to decrease the position error of the
UAV.

1 INTRODUCTION
Collaborative navigation is a research area that has been
increasingly active in recent years, especially in support
of military operations and Intelligent Transportation Sys-
tems (ITS) (Strömbäck et al., 2010). This is due to the fact
that these environments are oftentimes GNSS-challenged.
In military situations, UAVs or UGVs, may go from situa-
tions where GNSS is readily available to completely denied
(e.g., being jammed or traversing inside a cave). The major
downside of GNSS is that it requires an open-sky (Kealy
et al., 2015). In military operations, sub-meter level accu-
racy and high update rates (e.g., > 10 Hz) are needed, and
this is not always possible with standalone GNSS (Zador
et al., 2000). In the context of ITS, urban canyons often
lead to extreme multipath and GNSS outages, which can
cause positioning errors as large as a few hundred meters
(Ko et al., 2015). These scenarios are a few of the better-

known cases when cooperative navigation would be bene-
ficial. Other cases include, UAVs for bridge inspection or
structural health monitoring (Guo et al., 2011), UAVs for
surveillance in urban environments (Alam et al., 2013), or
UAVs transitioning from indoor-to-outdoor or vice versa (Ser-
ranoa et al., 2014).

To improve the positioning solution, multi-sensor in-
tegration has to be considered. As discussed in Titterton
and Weston (2005), a number of techniques have been in-
troduced to combat the issues in GNSS-challenged condi-
tions, such as Inertial Navigation Systems (INS) and odome-
ters; but it is well known that these sensors diverge rapidly
over time and will not be able to handle long GNSS outages
and multipath.

Collaborative positioning techniques, such as using
local measurements between vehicles or nodes, have helped
tackle this problem. Collaborative navigation uses many
sensors to aid in navigating when GNSS is degraded or
not available. These sensors include Inertial Measurement
Units (IMU), inter-nodal raging, lasers, cameras, magne-
tometers, and various other aides. Many collaborative nav-
igation techniques focus on the use of Vehicle Ad-Hoc Net-
works (VANETs), where multi-sensor fusion is used on
individual nodes, and the collaboration between nodes is
opportunistic in nature. Most of the collaborative naviga-
tion communication is with Dedicated Short Range Com-
munications (DSRC) for vehicle-to-vehicle and vehicle-to-
infrastructure communication (Kealy et al., 2015).

The typical approaches used in DSRC are Angle of
Arrival (AoA) and Time of Arrival (ToA). The AoA posi-
tioning technique measures the angle between the reference
nodes and the target nodes. ToA, used for Ultra WideBand
(UWB) radios, rely on the travel time of the measurement
from the reference node to the target nodes (Gezici et al.,
2005). An advantage of using UWB signals is they have
been shown to work in non-LOS application, can penetrate
walls, and are not significantly impacted by multipath (Gao
et al., 2014). Another benefit using the UWB radios, are
their weight and cost.

Kassas and Humphreys (2013) used signal of oppor-



tunities, radio signals, to draw navigation and timing in-
formation. The authors found that adopting a information-
based optimal motion planning performed better than hav-
ing a pre-described path. The optimal motion planning
evaluated different actions that the receiver could take, then
move to a location that would maximize the information
about the environment. The use of an cooperative navi-
gation algorithm to navigate vehicles through a field with
obstacles, has been seen in Ferrari et al. (2011). In this
case, the UAV provides a low resolution map to the UGV,
so it can plan it’s movements based on the objects ahead.
However, this requires the UGV to be in the field of view
of the UAV which does not help in urban canyons, as the
GNSS information would be the same for both vehicles.

Using peer-to-peer updates for positioning is not new,
as there is plenty of research that has been conducted on
stationary nodes (Bais and Morgan, 2012) (Kealy et al.,
2015) and on moving nodes (Gao et al., 2014) (Parker and
Valaee, 2007) (Kassas and Humphreys, 2013). For exam-
ple, Bais and Morgan (2012) evaluated the best position for
placing base stations, to have the area covered by 4 base
stations at all times. Gao et al. (2014) investigated using
UWBs on a vehicle-to-vehicle platform, where the vehi-
cles exchanged their position with each other. Hardy et al.
(2016) and Strader et al. (2016) focused on the design and
evaluation of an estimation strategy for determining the rel-
ative pose of the aircraft, between UAVs in a GPS-denied
environment. On the contrary, there has been less of an
emphasis on the control or design for the location of the
cooperative navigation nodes.

In this paper, the use of cooperative navigation is in-
vestigated between a UGV and a UAV, in which a DSRC
consisting of a UWB radio, is used to provide range mea-
surements between the two vehicles and the UGV is strate-
gically moved in order to reduce the Position Dilution of
Precision (PDOP) of the UAV. PDOP was chosen as our
basis for designing the UGVs trajectory because it well-
known that the PDOP is essential in determining the accu-
racy of a positioning system (Misra and Enge, 2006). In
this setting, the following is taken advantage of: (1) the
UGV has a non-degraded GNSS solution, (2) a single UGV
acting as a ranging source is able yield a wide range of unit
vectors with respect to the location of a UAV, and (3) a
UGV is naturally positioned to improve a UAV’s solution
geometric as it emanates its ranging signal from a direction
that a GNSS transmitter cannot. By leveraging these char-
acteristics, this cooperative navigation algorithm yields in-
creased accuracy of the positioning of the UAV faced with
GNSS-challenged conditions.

The rest of this paper is organized as follows. Sec-
tion 2 motivates our cooperative approach by assessing the
effectiveness of a single ranging sources ability to reduce
PDOP when given the freedom of the transmitter location.
Section 3 describes the algorithm formulation of the coop-
erative navigation for both without the UGV and with the

UGV. Next, Sections 4 and 5 presents the results of a series
of simulations. Finally, Section 6 discusses the conclusion
of the study and future planned experimental work.

2 CONCEPT OVERVIEW
Figure 1 shows the assumed set-up for the cooperative navi-
gation in an urban canyon. The UAV is in a GNSS-challenged
environment (e.g. under forest cover, urban canyon, bridge
inspection). It is furthered assumed that the cooperative
vehicle is not GNSS-challenged. A UGV is initially be-
ing assumed as the cooperative vehicle, but the technology
being discussed herein is not restricted to use on a UGV.
This only simplifies the ability to realize an experimental
demonstration.

2.1 Review of PDOP
Dilution of Precision (DOP) provides a simple character-
ization of the user-satellite geometry. The better the ge-
ometry, the lower the DOP, the better the position esti-
mate. Starting from the Linear Least Squares (LLS) GNSS-
solution,

∆x = (GT G)−1GT
∆ρ (1)

where G is the “Geometry Matrix”. The pseudorange mea-
surement model is given by the equation

ρ
k
C = rk + cδtu + ε̄

k
ρ (2)

where rk is the geometric range from satellite k to the user,
c is the speed of light, δtu is the receiver clock bias, and ε̄k

ρ

is the measurement residuals, where it is assumed that the
measurement residuals are zero-mean E[ε̃ρ], and the vari-
ance of the error is given by

E[ε̃ρε̃
T
ρ ] = Pε = σ

2
UREI (3)

where σURE is the standard deviation of the “User Range
Error” and is provided by the GPS control segment. Using
the LLS solution, the clock bias estimation, and the zero-
mean assumption, the estimation covariance matrix can be
formed

cov[∆x] = σ
2
URE(G

T G)−1 = σ
2
UREH (4)

where G is the Geometry Matrix and ρ is the pseudorange
measurement. The Geometry Matrix is constructed by cre-
ating a set of unit vectors, of the distance between the satel-
lites and the UAV position. Within this study, the Geome-
try Matrix is augmented by the UWB measurement from
the UGV, which effectively acts as another satellite obser-
vation.

where HDOP is formed as shown in Eq. 5

HDOP = (GT G)−1 = diag
[
H11, H22, H33, H44

]
(5)

The Root Mean Square (RMS) of the 3D position is known
as the Position Dilution of Precision (PDOP),

PDOP =

√
HDOP

11 +HDOP
22 +HDOP

33 (6)



Figure 1. Concept Diagram for Cooperative Navigation with UWB Ranging between a UAV and UGV

2.2 Reducing PDOP with a Single Ranging Source

To motivate the potential of this approach, a simple Monte-
Carlo simulation was conducted to determine the maximum
amount of PDOP reduction that could be realized by the ad-
dition of a single ranging source, for different GNSS satel-
lite geometries. That is, the location of the simulated user
location and the GNSS time of week was randomized in
order to realize a large number of constellation geometries
for a given scenario. Next, to simulate a GNSS-challenged
condition, high azimuth and elevation masks were applied
to simulate a user’s GNSS visibility being impacted. As
a single example, Figure 2 shows the percentage of PDOP
reduction that could occur, with the inclusion of a UWB
ranging source located in the best position within a 25 m
square grid surrounding the UAV’s location, as a function
of the GNSS-only PDOP.

In Figure 2, a 180 degree azimuthal mask and 50 de-
gree elevation mask was used to simulate a UAV up against
a tall building. From this analysis, it is apparent that the
poorer the satellite geometry, the more beneficial the sin-
gle ranging source can become. For example, the PDOP
can reduced by 90 % when the initial PDOP is 10 (i.e. the
PDOP can be reduced to as low as 1). However, the min-
imum potential PDOP reduction is also shown to motivate
the fact that the cooperative ranging source must be strate-
gically placed. That is, the additional ranging source could
offer little or no benefit if poorly located.

Figure 2. Monte Carlo simulation result that illustrates the poten-
tial improvement of including a single additional rang-
ing source that is optimally placed.

3 ALGORITHM FORMULATION

This section gives an overview of the formulations used in
this paper. First an overview of the GNSS/INS filter de-
sign is discussed, then how the UWB is implemented in the
GNSS/INS filter, and finally the cooperative strategy, lo-
cally greedy and regionally optimal, used for the UGV and
the UAV.



3.1 Core GNSS/INS Filter Design
The GNSS/INS integration filter adopted uses INS error-
state formulation with closed-loop feedback, which cor-
rects the integrated INS solution at each time step. The INS
estimated navigation states are used to predict the GNSS-
observable within the EKF. The estimated state vector is,

x =



δΨ

δv
δr
ba
bg
δtu
δ̇tu
Tw
N1
...

N j



(7)

where δΨ is the INS attitude error, δv is the INS velocity
error, δr is the INS position error, ba is the Inertial Mea-
surement Unit (IMU) tri-axial accelerometer sensor biases,
bg is the (IMU) tri-axial gyroscope sensor biases, δtu is the
estimated receiver clock bias, δ̇tu is the estimated receiver
clock drift, Tw is the estimated troposphere, and N1.. j is the
estimated phase bias for each satellite in view. For the at-
titude update, a 3rd order fixed-step Runge-Kutta integra-
tion method was used for the integration of the quaternion,
which represents the UAV’s body attitude in the Earth Cen-
tered Inertial (ECI) frame (Jekeli, 2001). For this study,
an error-state Kalman Filter is being used, where the for-
mulation for the position, attitude, and velocity equations
are from Groves (2013). For the complete details of the
GNSS/INS formulation adopted, the reader is referred to
(Gross et al., 2015) and (Watson et al., 2016).

3.2 GNSS/INS Augmentation with UWB Ranges
The GNSS observation matrix, Hobs, is dependent on the
number of satellites in view, and the number of states es-
timated, as shown above in the state vector Eq. 7, which
is 18. It represents the sensitivity of the observed mea-
surement models to the state being estimated. The first 6
columns of Hobs correspond to, the INS attitude and veloc-
ity errors and are zero as they do not appear in the GNSS
pseudorange and carrier-phase observation models. The
next 3 columns of Hobs are the partials of user’s ECI po-
sition. Columns 10-15 of Hobs are the partials of the IMU
sensors biases which are modeled with random-walk dy-
namics and therefore zero, and column 16 is the partial
derivative of the GNSS receiver clock bias. In this study, no
GNSS receiver clock drift is estimated, therefore clock drift
partial is zero. The troposphere’s zenith delay partials are
comprised of the elevation dependent mapping function,
and appear in column 18 of Hobs. The rest of the columns
are populated with an identity matrix over the block of rows
that correspond to the carrier-phase observations. This iden-

tity matrix represents the partial derivative of the carrier-
phase observational model with respect to the carrier-phase
biases. This is the Hobs matrix when the UGV is not being
used. The size of the Hobs matrix is shown in Eq. 8

Hobs = [2∗S , N +S] (8)

where S is the number of GNSS satellites in view and N is
the number of non phase-bias states estimated. When the
UGV is employed, Hobs only slightly differs. The UGV is
considered as an additional GNSS satellite measurement,
but this measurement only has partial for the position as it
does not have a receiver clock bias, troposphere delay, or a
carrier-phase bias.

Hobs =


01x6 uX uY uZ 01x6 1 0 Mel 0nxn

...
...

...
...

...
...

...
...

01x6 uX uY uZ 01x6 1 0 Mel Inxn
...

...
...

...
...

...
...

...
01x6 uwbX uwbY uwbZ 01x6 0 0 0 01xn


(9)

where n is the number of satellites in view. The UWB
range, distance between the UAV and UGV, is implemented
as an observation in the zk vector and is shown in Eq. 10.

yuwb = ||posUAV − posUGV ||2 (10)

To include the UWB ranging source, the UWB range must
be predicted for inclusion in the filter. Then the difference
between the UWB predicted range and the UWB measured
range was inserted at the end of the zk vector.

zk =



∆ρ1
...

∆ρN
∆Φ1

...
∆ΦN

∆UWB


(11)

where ∆ρ is the Observed Minus Computed (OMC) pseu-
dorange of the satellites in view, ∆Φ is the OMC carrier
phase of the satellites in view, and the ∆UWB is OMC
UWB range, where the computed is the distance between
the UAV and UGV.

A simple UWB error model was parameterized by
empirically modeling the UWB ranging errors with two
Time Domain P410 Ranging and Communication Radio
Modules (RCM). These tests consisted of both line-of-sight
(LoS) and non-line-of-sight (NLoS). The following Figures
3, 4, and 5 show one of the test set-ups, the corresponding
error history, and the histogram, respectively.

The mean and standard deviation of the error were
6140 mm and 28 mm, respectively. In the filter, a normal
distribution of 5 cm was added to the UWB measurement
as a conservative bound of the empirically estimated distri-
bution.



Figure 3. Set up for short range Non Line of Sight (NLoS) rang-
ing testing.

Figure 4. Time history of ranging errors for short range NLOS.

3.3 Cooperative Strategy
The two strategies that were evaluated included: (1) hav-
ing the UGV choose the minimum PDOP, of the UAV, if
it were to select from points immediately around the UGV,
and (2) having the UGV calculate the minimum PDOP, of
the UAV, it it were to be located anywhere within a 50 me-
ter by 50 meter grid centered at the UAV, then moving in
the regionally optimal direction. For both approaches, the
maximum distance that the UGV is assumed to move over
one GNSS measurement updated interval is 1 meter.

Figure 5. Distribution of ranging errors for short range NLOS.

3.3.1 Locally Greedy Strategy

In this approach, first the UAV captures the signals from all
available GNSS satellites to calculate is position solution.
After the UAV communicates the satellites it has in view,
the UGV determines which location it should move, Eq.
12, in order to reduce the PDOP. This is accomplished by
the UGV calculating what the UAV’s PDOP would become
when incorporating a UWB ranging update from each of
the UGV’s candidate locations. With the Locally Greedy
approach, the list of candidate position includes of all po-
sitions immediately surrounding the UGV. The number of
positions evaluated that encircle the UGV was set to 10.

To implement this approach, 10 candidate UGV head-
ing angles, Ψ`=1:10 =

[
0, . . . ,2π

]
, were selected and

candidate positions were calculated using Eq. 12.

rUGV,ENU`

k+1 =

rUGV,E
k +d ∗ cos(Ψ`)

rUGV,N
k +d ∗ sin(Ψ`)

0

 (12)

where rUGV,ENU`

k+1 is the UGV’s candidate location for head-
ing angle Ψ`, rUGV,E

k is the UGV’s current East position,
rUGV,N

k is the UGV’s current North position, d is the move
distance of the UGV, Ψ` is the candidate heading loca-
tion around the rover that is being evaluated. With each
candidate UGV location, the UAV’s GNSS-only Geometry
Matrix, G, is augmented using unit vector to the candidate
UGV position and current best estimate of the UAV’s posi-
tion

uuwb =
rUAV

k − rUGV,ENU`

k+1

||rUAV
k − rUGV,ENU`

k+1 ||2
(13)

where the uuwb is the unit vector distance between the UAV
and the candidate UGV position. With the set of UAV Ge-
ometry matrices augmented with each UGV candidate lo-
cation, the PDOP for each candidate 1 to ` is evaluated, and



the minimum PDOP is selected as indicated in Eq. 14.

minPDOP = argmin(PDOP1 ... PDOPN) (14)

Once the minimum potential PDOP of the UAV is identi-
fied, the UGV is moved to the location that corresponds to
the minimum UAV PDOP. Additional UGV path planning
logic was also included to ensure that it does not get too
close to the UAV. This is to ensure that the UGV doesn’t
also enter the GNSS-challenged environment. For the time
being, this is implemented as a simple perimeter of radius
70 meters was set around the UAV’s best known location
and established a no-UGV-zone. As such, if the UGV’s
next desired trajectory position falls inside the perimeter,
the following steps are taken. First, the slope of the dis-
tance between the UAV and UGV is found using Eq. 15.

m =
∆rN

∆rE
(15)

where m is the slope, ∆rN is the North component of the
distance between the UAV and UGV, and ∆rE is the East
component of the distance between the UAV and UGV.
Next, the intersection of the perimeter and the UGV, is de-
termined, based on the slope and the equation for a circle
as shown in Eq. 16 and 17 .

rUGV,E
k+1 = sign(rUGV,E

k )

√
r2

perim

(m2 +1)
(16)

rUGV,N
k+1 = mrUGV,N

k (17)

where rUGV,E
k+1 is the UGV’s next East position, rperim is the

radius of the perimeter, and rUGV,N
k+1 is the UGV’s next North

position. In Eq. 16, the sign operator is to ensure rover
is located in the proper quadrant of the circle. For future
development of this approach, a prior map information will
be included in this part of the trajectory design for selection
of the perimeter.

3.3.2 Regionally Optimal Strategy

For the regionally optimal cooperative UGV path planning
strategy, a 50 meter by 50 meter grid is setup with the
UAV at the center. Then, UWB-augmented-PDOP from
including a ranging observation that is emanating from ev-
ery point on the grid is computed. As an example of this
approach, Figure 6 shows the percentage reduction possi-
ble for the 50 meter by 50 meter grid at one time step, for
one simulation scenario. The yellow represents a region
in which a 60 % percentage reduction is achievable. After
evaluating this grid, the minimum overall PDOP is deter-
mined as seen in Eq. 18.

minPDOPgrid = argmin(PDOP1grid ... PDOPNgrid)
(18)

Once the east and north location of where the PDOP is min-
imum is found, the UGV is driven in that direction. This is

Figure 6. Regional optimal strategy using a grid to calculate min-
imum augmented-PDOP

Figure 7. Diagram of heading calculation between two UGV lo-
cations.

accomplished by first determining the distance between the
current UGV position and the location where the PDOP of
the UAV is minimum over the grid as shown in Eq. 19 and
20.

∆rUGV,E = rUGV,E
k −EGrid

PDOPmin (19)

∆rUGV,N = rUGV,N
k −NGrid

PDOPmin (20)

where E,NGrid
PDOPmin is the location where the PDOP would

be minimized for the rover location within the grid. From
here, the heading angle, Ψ, is found to determine which
direction the UGV should move, as seen in Figure 7. The
heading was calculated by Eq. 21.

Ψ = atan2(∆rUGV,N ,∆rUGV,E) (21)

Since there is a constraint that the UGV can only move a
maximum of 1 meter per time step, the next UGV location
is determined based on the move distance and the heading,
Eq. 22 and 23.

rUGV,E
k+1 = rUGV,E

k +d ∗ cos(Ψ) (22)
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Figure 8. Example of locally greedy and regionally optimal path
in a GNSS-challenged environment

rUGV,N
k+1 = rUGV,N

k +d ∗ sin(Ψ) (23)

where d is the maximum move distance of the UGV and Ψ

is the heading angles. As stated above, there is a check in
place to make sure the UGV does not come too close to the
UAV. If it does, the same procedure described in Section
3.3.1.

4 SIMULATION ENVIRONMENT
The raw GNSS and IMU data used in the simulation was
generated using a commercially available SatNav-3.04 and
Inertial–Navigation Toolboxes (GPSoft 2003), which is a
GNSS constellation simulation toolbox. Inputs that were
defined for the generation of GPS and IMU data, were the
origin in Latitude, Longitude, and Height, the time of the
week, and the length of the flight. These inputs were se-
lected at random, giving each case different satellite geom-
etry and atmospheric effects. For more information on the
generation of data, please refer to (Watson et al., 2016) for
a more detailed description.

The particular error source important to this study
was GNSS multipath errors. As such, for this work the
multipath error was increased to simulate the GNSS- chal-
lenged environment of an urban-canyon. Multipath was
modeled as a first order Guass-Markov error source and
with a σ =8 meters and a time constant, τ of 2 minutes.
Furthermore, to simulate a GNSS-challenged environment,
an elevation and azimuth mask, i.e. buildings in an urban
canyon, was incorporated as seen in Figure 8. The masks
were held constant throughout the simulated flight, and for
all data sets. This simulation also included an orbit er-
ror model to represent the errors in the GNSS broadcast
ephemeris. The satellite ephemeris errors were modeled by
differencing the broadcast products provided by the Inter-
national GNSS Service (IGS) and the Center for Orbit De-
termination (CODE). A multi-sinusoidal model was fitted
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to the error, and based on the time of day. More information
can be found in Watson et al. (2016). The UAV and UGV
were assumed to start at arbitrary positions. Within this
study Monte-Carlo design was implemented and 10 data
sets were generated.

5 RESULTS
The generated data sets were run through the GNSS/INS
filter with and without augmentation from the UGV in or-
der to characterize the performance of including a coopera-
tive UGV. Next, both cooperative strategies were attempted
such that any differences between the two different approaches
would become apparent. In Figure 9, the first graph shows
the GPS position error when having a UGV employing the
locally greedy cooperative strategy, the second is when the
UGV is using the regionally optimal strategy, and the last
one is without having a UGV. Table 1 shows the average
RMS values for the East, North, and Vertical position er-
ror. It can be seen that having a UGV employing the locally
greedy strategy is better than having no UGV, and having a
UGV employing the regionally optimal strategy is the best
scenario.

Table 1. Average RMS of 10 data sets
E. (m) N. (m) V. (m)

No Ground Vehicle 1.89 1.47 4.46
Locally Greedy 0.92 0.55 2.96

Regionally Optimal 0.48 0.47 1.92

In Figure 10, the first graph shows the multi-constellation,
GNSS, position error when having a UGV employing the
locally greedy cooperative strategy, the second is when the
UGV is using the regionally optimal strategy, and the last
one is without having a UGV. Table 2 shows the average
GNSS RMS values for the East, North, and Vertical posi-
tion error. As with the GPS case, having no UGV is the
worst scenario, but for the GNSS case, the locally greedy
scenario was the best case. In all scenarios for GNSS, the
RMS values were less than the GPS-only case.

The next figures detail a specific example of one sim-
ulation trial in which the UGV’s path and the reduction in
PDOP are shown. Figure 11 shows the path that the UGV
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Table 2. Average RMS of 10 data sets
E. (m) N. (m) V. (m)

No Ground Vehicle 0.47 0.19 1.30
Locally Greedy 0.19 0.16 1.03

Regionally Optimal 0.22 0.19 0.99

takes when employing both the locally greedy path and the
regionally optimal path. The ∗ is where the UGV starts,
and the x is where it ends. The blue line indicates the lo-
cally greedy path, and the green line indicates the region-
ally optimal path. The circle is the perimeter that the UGV
is not allowed to cross. The locally greedy UGV, moves
toward the UAV in the East direction, but has no change in
the North direction. Whereas the regional optimal strategy
moves toward the UAV, then moves along the constraint
boundary. This is expected, as we can see from Figure 6,
the largest reduction of PDOP matches the path of the UGV
with regionally optimal strategy employed.

Figure 12 shows the PDOP over the entire flight for
having no UGV,the UGV employing the locally greedy al-
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Figure 11. UGV’s path, Regionally Optimal and Locally Greedy,
in a GNSS-challenged environment
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gorithm, and the UGV employing the regionally optimal
approach. The PDOP when having the UGV is much less
than when there is no UGV. It can be seen how much an ef-
fect having a UGV’s ranging source can have on the PDOP.
Figure 13 shows the comparison of PDOP while using a
UGV with a regionally optimal strategy and the locally
greedy strategy. The PDOP for the regionally optimal al-
gorithm is reduced further than that of the locally greedy
path planning approach.

6 CONCLUSIONS
A cooperative navigation strategy has been employed to
improve the positioning of a UAV in a GNSS-challenged
environment. This paper described the filter design, co-
operative techniques, and a simulation evaluation. As ex-
pected, having a UGV ranging source has been shown to
help in the positioning of the UAV whenever it was co-
operatively located. This work has shown that employing



different cooperative strategies for trajectory planning of
the UGV has an effect on the vehicle positioning. The re-
gionally optimal strategy performed better than the locally
greedy strategy. Future work will consider implementing
a differential-type filter between the two vehicles, and an
experimental flight-test evaluation.
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