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ABSTRACT
This paper details the integration of an Inertial Naviga-
tion System (INS) processing capability within JPL’s RTGx
geodetic data analysis and navigation software, and pro-
vides a performance analysis with experimental flight data
in order to validate the implementation. The RTGx soft-
ware, when used in conjunction with JPL’s Global Differ-
ential GPS System (GDGPS), can be configured for real-t
ime kinematic Precise Point Positioning (K-PPP) for centimeter-
level positioning accuracy. Since 2006, RTGx’s predeces-
sor, RTG, has provided operational real-time K-PPP for
NASA’s Uninhabited Aerial Vehicle Synthetic Aperture Radar
(UAVSAR) repeat pass interferometry mission on campaigns
all over the world. While RTG’s GPS-only data processing
is meeting mission requirements during nominal science
operations, its performance naturally degrades during cer-
tain flight scenarios, such as abrupt changes in the aircraft
attitude or high banking turns, which induce signal loss-of-
lock, carrier-phase breaks and/or cycle slips. During these
periods, the well-known downsides of K-PPP, including the
position solution’s sensitivity to phase breaks and slow con-
vergence after loss-of-lock become apparent, and may im-
pact the instruments critical data take periods. Therefore,
tightly-coupled INS has been integrated into RTGx to of-
fer additional robustness. This paper discusses the adopted
INS formulation and uses the flight data made available to
the community by the National Geodetic Survey’s Kine-
matic Challenge (Damiani et al., 2013) to offer an experi-
mental performance evaluation. The integration of INS in
RTGx is shown to provide solution improvements both in
terms of accuracy and precision with respect to a post- pro-
cessed ambiguity-fixed reference solution. Furthermore,
the integration of INS into the RTGx software will enable
RTGx to support new application domains.

1 INTRODUCTION
1.1 Background and Motivation
It is well known that GPS PPP-based real-time positioning
techniques are sensitive to dropped satellite observations
and carrier phase breaks (Bisnath and Gao, 2009). To ad-
dress this, recent studies have shown that multi-constellation

GNSS can improve K-PPP position solution convergence
rate (Cai et al., 2015) and offer better positioning perfor-
mance when working with relatively short observation du-
rations (Yigit et al., 2014). Likewise, the incorporation of
Inertial Navigation Systems (INS) within K-PPP has also
been shown to offer faster solution convergence, better re-
covery from cycle slips, and improved robustness to signal
blockage providing performance that is comparable con-
ventional local-area Real-Time Kinematic (RTK)/INS so-
lutions (Zhang and Gao, 2008).

RTGx (Bar-Sever et al., 2015) is JPL’s new GNSS
processing software that can be configured for real-time or
post-processed constellation orbit and clock determination,
Low-Earth Orbiter (LEO) Precise Orbit Determination, or
Precise Point Positioning (PPP). RTGx underlies the navi-
gation software for the Air Force’s next generation GPS op-
erational control segment (OCX) (Bertiger et al., 2012). In
conjunction with JPL’s GDGPS System, where RTGx gen-
erates the real-time GNSS orbit and clocks products, and is
also the point-positioning engine, RTGx routinely and op-
erationally produces sub-decimeter real-time kinematic po-
sitioning for a large number of GNSS tracking sites, glob-
ally [www.gdgps.net].

Different from its predecessor, RTGx now supports
a multi-constellation GNSS processing capability, thus, an
additional natural evolution of the RTGx software is to sup-
port an INS capability for kinematic applications that have
demanding requirements. While tight GNSS/INS integra-
tion is by no means a new concept, integration of INS within
RTGx inherits features that are already unique to JPL’s RTGx
processing strategy, such as single-receiver integer ambigu-
ity resolution (Bertiger et al., 2010) as well as flexible and
easily extendable parameter and model configuration. In-
corporation of INS in RTGx will further enable research
in more advanced INS/GNSS models, such as solving for
deviations of the local gravity error, processing platforms
with multiple antennas, leveraging atomic clocks, ingesting
pressure sensor data for troposphere modeling, solving for
unknown IMU lever arms, and processing kinematic plat-
forms as part of a network solution, all of which which can
contribute to increased accuracy required by various sci-
ence applications.



This paper presents the details of an baseline imple-
mentation of INS within RTGx and offers a validation of
its performance by processing flight data from the National
Geodetic Survey’s (NGS) Kinematic Challenge (NGS, 2011).
The use of the NGS Kinematic Challenge data enables per-
formance comparisons against a post-processed carrier-phase
ambiguity fixed (Bertiger et al., 2010) reference solution
that was processed by JPL researchers using GIPSY-OASIS
II and has been vetted for accuracy through a comparison
with several other post-processed solutions contributed by
the research community who used various GPS software
packages and differential processing techniques as part of
the Kinematic Challenge (Damiani et al., 2013). For this
experimental data analysis, forward-filter only K-PPP per-
formance with and without the inclusion of INS is assessed
against the reference solution. Furthermore, RTGx/INS
filter-only platform attitude estimates are compared with
the smoothed best estimates of the commercially available
GPS/INS attitude solution flown in NGS GRAV-D aircraft.

The immediate need for this work was motivated by
the NASA JPL’s Uninhabited Aerial Vehicle Synthetic Aper-
ture Radar (UAVSAR) project. UAVSAR is an airborne
L-band Synthetic Aperture Radar (SAR) platform that has
relied upon RTG and GDGPS to provide real-time posi-
tion feedback for guiding a precision platform auto-pilot
since the project’s inception in 2006 (Rosen et al., 2006).
The UAVSAR application is particularly well-suited for us-
ing K-PPP because it requires real-time positioning with
global-availability in order to support rapid response to nat-
ural hazard events (e.g. earth quakes, volcanic activity)
over remote locations, thus precluding the use of RTK with
a reference station. The primary need of real-time posi-
tioning on UAVSAR is to guide a precision autopilot in or-
der to ensure that the platform flies the same trajectory be-
tween subsequent visits to a particular campaign site. Oper-
ationally, throughout the UAVSAR project, it has been the
case that immediately before the autopilot is engaged for a
radar data-take, an abrupt aircraft bank occurs, which in-
duces dropped satellites and/or carrier phase breaks. This,
in turn, degrades the positioning performance, and because
of this, the real-time K-PPP solution is often in the process
of re-converging to its achievable centimeter-level perfor-
mance during the short period of time in which is most crit-
ical for real-time observations. By including INS in RTGx,
it is expected to increase the robustness of the real-time po-
sitioning solution.

The rest of this paper is organized as follows. The
next section describes the integration architecture and INS
formulation implemented in RTGx. Then, the contents of
the NGS Kinematic Challenge data are reviewed. Finally,
both sets of flight data are used to validate the performance
of the INS implementation in RTGx and the next steps of
this work are summarized.

2 ALGORITHM FORMULATION
This section describes the PPP/INS integration architecture
selected for RTGx, as well as the details of the selected INS
formulation. The algorithmic details of the PPP models
and observation equations are not reviewed in this paper,
as these were not modified in RTGx as part of this work.

2.1 Integration Architecture
The integration architecture adopted for RTGx is an INS
error-state formulation with closed-loop feedback correct-
ing the integrated INS solution at each time-step (Groves,
2013) as shown in Figure 1.

As shown in Figure 1, the INS estimated navigation
states are used to predict GNSS observables within the Kalman
Filter (i.e. in the case of RTGx a Square Root Information
Filter (Bierman, 2006) formulation is used). Using the dif-
ference between the two data sources, error-states of the
INS solution along with some standard PPP states ( i.e. re-
ceiver clock model states, phase biases and zenith tropo-
spheric delay) are estimated. The overall estimated state
vector is shown in Eq. 1, and is comprised of:

• δΨ - INS attitude error;

• δv - INS velocity error;

• δr - INS position error;

• ba - three Inertial Measurement Unit (IMU) tri-axial
accelerometer sensor biases;

• bg - three IMU tri-axial gyroscope sensor biases;

• δtu - the estimated receiver clock bias;

• δ̇tu - the estimated receiver clock drift;

• Tw - the estimated residual tropospheric delay along
the zenith direction;

• N1... j - estimated phase bias for each satellite in view.

x =



δΨ

δv
δr
ba
bg
δtu
δ̇tu
Tw
N1
...

N j



(1)

It can also be seen in Figure 1 that the estimated IMU sen-
sor biases are fed back to correct the raw IMU measure-
ments. Feedback of both the INS error-states and the IMU
sensor biases is done every time that a GNSS measurement



Figure 1. RTGx INS integration architecture. Error-states to the INS and IMU sensor biases are estimated and fed-back in a closed-loop
manner to correct the navigation states.

update is performed. For the position and velocity, the es-
timated error-states δr and δv are used to correct the INS
position and velocity by simply adding the solved for delta
to the INS state. The attitude estimated error-state is ap-
plied to the INS attitude using a small-angle approximation
as shown in Eq. 2

Cb
i = (I−δΨ)∗Ĉb

i (2)

where Ĉb
i is the DCM populated with the INS estimated

quaternion, which is described in the next section.

2.2 Inertial Navigation System Mechanization
Since Newton’s equations of motion are simplest in an in-
ertial reference frame and RTGx already deals with Earth
orbiting satellites, the natural reference frame for it’s mod-
els is an Earth Centered Inertial frame. Thus we adopt, an
Earth Centered Inertial (ECI) frame to mechanize the INS
model. The inertial navigation mechanization equations are
derived in many technical references (Groves, 2013; Jekeli,
2001), and summarized here.

2.2.1 Attitude Update

To perform the attitude update, a 3rd order fixed-step Runge-
Kutta integration method was chosen for the integration of
the quaternion that represents the aircraft’s body attitude
in an ECI frame. The specific integrator used is detailed
in the INS for Geodetic Applications text written by Jekeli
(Jekeli, 2001), which is shown to limit the algorithmic in-
tegration errors to the fourth order. The quaternion is in-
tegrated using Eq. 3: where I is an identity matrix, β is

composed of the delta theta IMU measurements (i.e. incre-
mental body-axis angular rate integrations over the IMU
sample rate interval) within the aircraft body-axes in Eq. 4,
and the subscript t signifies the IMU time step (e.g. t−2 is
using data from two discrete sample intervals in the past).

The platform’s body-to-ECI direction cosine matrix
(DCM) Ci

b is then related to the updated quaternion using
standard attitude representation transformations found in
many aerospace texts (Stevens and Lewis, 2003; Markley
and Crassidis, 2014). Furthermore, upon quaternion inte-
gration, it is possible that integration error and/or the noisy
IMU measurements will lead to quaternion that does not
represent an orthonormal transformation. In order to pre-
vent this, the quaternion is periodically normalized to unity.

2.2.2 Velocity Update

Once the IMU delta angles have been integrated to up-
date the INS attitude estimates, the IMU accelerometer’s
specific force measurements must be transformed from the
body-axis to the ECI frame before integration. Like IMU
angular rates, high-grade IMUs typically provide acceler-
ation measurements in the form of incremental changes to
the body-axis velocity ∆vb, which are internally integrated
within the IMU over the sample interval. The transforma-
tion was conducted by simply multiplying IMU measure-
ments by the body-to-ECI DCM, Ci

b, as shown in Eq. 5.

∆vi =Ci
b∆vb (5)

With the transformed specific force, INS velocity is
determined through a simple integration as shown in Eq. 6.
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In Eq. 6, the updated INS velocity estimate is the summa-
tion of the previous velocity value (k−1|k−1) and the IMU
measured change in velocity, ∆vi. In addition, the accelera-
tion due to gravity, which cannot be explicitly measured by
the IMU, must be modeled and represented in ECI compo-
nents, denoted by γi in Eq. 6, and integrated over the INS
integration internal τ.

vi
k|k−1 = vi

k−1|k−1 +∆vi + γ
i
τ (6)

For modeling gravity, the model specified in the 2010
IERS conventions was adopted (Petit and Luzum, 2010).

2.2.3 Position Update

Finally, the position in an ECI frame is updated by simply
integrating from the previous position estimate with the av-
erage velocity over the INS integration interval. For this
integration, trapezoidal integration is used by averaging the
previous velocity estimate and the updated velocity esti-
mate.

ri
k|k−1 = ri

k−1|k−1 +(vi
k|k−1 + vi

k−1|k−1)
τ

2
(7)

2.3 Error-State Extended-Kalman Filter
To calculate INS error-state system matrix, F , the deriva-
tive of each error-state model equation with respect to each
solved for parameter must be taken. In this section, the
derivative of the attitude, velocity, and position equations
are described as derived by Groves (2013). After defining
the time derivatives of the error state equations, the total
system matrix and the state transition matrix (STM), Φi, is
defined.

The time derivative of the attitude error can be seen
in Eq. 8: where Ĉi

b is the estimated body-to-ECI DCM, and
bg is the estimated bias on the IMU body-axis gyroscopes.

δΨ̇
i = Ĉi

bbg (8)

The velocity error-state derivative is dependent on the
accelerometer biases, gyroscope biases, as well as the grav-
ity model that is employed. Eq. 9 shows this time derivative
of the velocity error equation, δv̇i. In this implementation,
the gravity model partials used the simplified model offered
by Groves (2013).

In Eq. 9, f̂ i is the IMU accelerometer measured spe-
cific force in the inertial frame (i.e. δv/τ ), δΨi is the
current estimated attitude error, g is the estimated gravity

vector for the platform’s position, re
es is the geocentric ra-

dius at the platform position, r̂i is the INS estimated po-
sition vector, δri

ib is the estimated position error, and the
vector ba represents the estimated accelerometer sensor bi-
ases in units of m/s2 (i.e. note that accelerometer biases
are still modeled in units of acceleration although delta-
velocity measurements are being processed from the IMU).

δV̇ i =−(Ĉi
b f̂ i)δΨ

i +
2g
re

es

ˆri
ib

| ˆri
ib

2
|
r̂iT δri +Ĉi

bba (9)

With INS mechanized in an inertial frame, the time-
derivative of position is simply velocity, such that the time-
derivative of the position error is the velocity error.

δṙi = δV i (10)

Using the time derivative of each error-state equation,
the system matrix is defined in Eq. 11, as also given in
(Groves, 2013).
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 (11)

The discretized STM is then calculated using a power-
series expansion of system matrix as shown in Eq. 12,
where a third order expansion leads to Eq. 13. Where the
notation is such that F i

21 and F i
23 correspond to the value of

the system matrix at the specified row and column.

Φ = eF iτ (12)

Φ
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21Ĉi

bτ2)

( 1
2 F i

21τ2) (I3∗τ+
1
6 F i

23τ3) (I3∗+
1
2 F i

23τ2) ( 1
2 Ĉi
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2.4 Processing Rate
Within this selected INS formulation, because a Runge-
Kutta method relies on the availability of mid-points is adopted
for attitude integration, the INS navigation states are prop-
agated at a rate half of the available IMU data rate. That
is, in the case of the data presented in this paper both simu-
lated and the Kinematic Challenge flight data, 200 Hz IMU
data is used to predict attitude, position and velocity at a
rate of 100 Hz.

2.5 IMU to GNSS Lever Arm
The above INS mechanization provides estimates of the po-
sition and velocity located at the center of the IMU. In or-
der to combine with GNSS measurements, the INS solution
must be transposed to the GNSS antenna location. This
can be done using the estimated platform attitude Ĉi

b and
knowledge of the lever arm from the IMU to the GNSS an-
tenna, Lb, represented in the platforms North, East, Down
(NED) body-axis.

ri,GNSSAnt.
k|k−1 = ri,IMU

k|k−1 +Ĉi
bLb (14)

Likewise the velocity can be transposed further tak-
ing into consideration the rotation of the body-frame.

vi,GNSSAnt.
k|k−1 = vi,IMU

k|k−1 +Ĉi
bΩ

b
ibLb (15)

where Ωb
ib is the skew-symmetric matrix of the IMU

measured angular rate that has been calibrated by the esti-
mated gyroscope biases. The operation is performed upon
each GNSS measurement update, and reversed after closed-
loop feedback correction has been applied, in order to re-
sume INS integration about the location of the IMU. For
the NGS Kinematic Challenge data, the precisely measured
IMU to GPS antenna lever arm was provided, however, the
lever arm as been included as a potentially solved for pa-
rameter in the RTGx implementation.

2.6 GNSS/IMU Measurement Time-Alignment
Most commercially available high-accuracy GNSS/IMU sys-
tems provide IMU measurements precisely stamped to the
GPS time- scale, however, the IMU measurements are typ-
ically not scheduled to be precisely aligned with the GPS
measurement epochs. To ensure time-alignment in the RTGx
implementation, the IMU data was used to predict the nav-
igation state to an epoch just past the GNSS observation
epoch. This prediction was then used to linearly interpolate
the navigation states back to the time of the GNSS mea-
surements. Likewise, upon each GNSS update, an error-
state transformation matrix, that provides the mapping of
the INS error-states between the INS time-step (that is just
past the GNSS measurement epoch), and the exact GNSS
measurement epoch was derived. Prior to the GNSS up-
date, the inverse of this transformation was used to down-
date the predicted INS error-states to the GNSS measure-
ment epochs. After the update was completed, this trans-

formation was used to keep the INS error states consistent
with the INS time-tags.

3 ALGORITHM PERFORMANCE EVALUATION
For initial validation, a comprehensive performance char-
acterization was conducted using simulated flight data. This
simulation study is detailed by Watson et al. 2016. Here
we discuss evaluation using the NGS Kinematic Challenge
Data.

3.1 Flight Data
The NGS Kinematic Challenge (NGS, 2011; Damiani et al.,
2013) data sets includes two seperate data sets of

• 1 Hz dual-frequency GPS pseudorange and carrier-
phase observables

• 200 Hz GPS time-stamped IMU measurements

• surveyed lever arm between the platform’s instru-
ment and GPS Antenna, and between the instrument
and the IMU

• the commercial GNSS/INS systems smoothed atti-
tude estimates

In addition, a few GPS reference station data sets
are provided for deriving network-based or RTK solutions,
however the base-station data was not used in the analy-
sis presented in this paper. The two flight profiles are very
similar. Figure 2 shows the altitude profile of the first data
set.
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Figure 2. Altitude profile of the d297,y2008 Kinematic Chal-
lenge data-set. The aircraft rapidly ascends from sea-
level to an altitude of 11 km and then back to sea-level,
which is particularly challenging for handling the esti-
mation of the tropospheric delays of the GPS observ-
ables.

Furthermore, the flight profiles consist of long dura-
tion steady-level legs at almost precisely due-North/South
and due-East/West. These directional legs are particularly



useful for validating common GNSS/INS issues, such as
properly handling time-alignment and the sensor lever arms.
Figure 3 shows the Lat./Lon. profile of the flights.
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Figure 3. Lat/Lon profile of d297,y2008 Kinematic Challenge
data-set. The aircraft traverses in straight legs in
North/South and East/West which is beneficial for un-
covering systematic errors such as, incorrect lever-arm
and time mis-alignment.

3.2 Reference Solutions
In order to provide a reference position solution for validat-
ing the filter-only PPP/INS solution, JPL’s post-processed
submissions’s to the NGS Kinematic Challenge were used.
These solutions were processed with JPL’s GIPSY-OASIS
II software, and featured carrier-phase integer bias-fixing
using JPL’s Wide-Lane Phase Bias products (Bertiger et al.,
2010). Furthermore, GNSS data-outliers were deleted from
the final solution using an iterative windowing approach.

The reference platform attitude solution used in this
analysis is the smoothed best estimate solution provided
by the Applanix PosAV software and included in the Kine-
matic Challenge data sets.

3.3 Processing Strategy
In this analysis, two solutions are compared to the refer-
ence position solutions, namely K-PPP with INS and K-
PPP without INS. The analysis considers the performance
of the forward-filter only solutions, as this is most applica-
ble to the real-time needs of the target application for this
work, UAVSAR. This section described the distills of pro-
cessing strategies adopted.

For both filter-only K-PPP strategies, prior to pro-
cessing with RTGx, the RINEX data were pre-processed by
GIPSY’s GPS data editor in order to remove gross-outliers
and flag carrier-phase breaks (Blewitt, 1990). In addition,
for all runs with and without INS, a simple troposphere esti-
mation strategy that solves for a residual wet zenith delay as
a random walk parameter was adopted. This value was em-
pirically tuned to provide smooth estimation performance

when at altitude and selected to be 5e-5 m√
s . Furthermore,

for both cases, with and without INS, the GPS receiver
clock was modeled as a random walk process with 100
m√

s . Finally, all solutions used JPL’s final orbit/clock sub-
missions to the International GNSS Service (Desai et al.,
2011).

For designing the INS stochastic models, typically
the sensor specs of the individual IMU sensors (e.g. Angu-
lar Random Walk, Velocity Random Walk, bias-instabilities)
would be used to drive these models (Gross et al., 2011).
However, for the Applanix PosAV GPS/IMU system used
in the Kinematic Challenge data set, these IMU sensor pa-
rameters were unknown. Therefore, these parameters were
initially selected assuming an intermediate grade IMU and
then empirically tuned.

Finally, in order to provide better comparison and aid
in the convergence of the GPS-only K-PPP strategy, a dual-
frequency pseudorange-only solution was ingested as the a
priori nominal position solution with the filter-only runs.
The carrier-phase based K-PPP positions were then solved
as for assuming 10 meters of uncertainty in the nominal
solution at each data epoch.

4 RESULTS AND DISCUSSION
The key statistics with respect to positioning accuracy and
attitude estimation are summarized in this section. For po-
sitioning, the metrics selected include:

• Root Mean Square (RMS)

• Standard Deviation (σ)

• Average Bias (bE,N,U )

• Max absolute error (Max(|bE,N,U |))

For this analysis, all errors are reported with respect
to the reference solutions and are decomposed into their
East, North and Vertical components. Furthermore, these
metrics are reported after initial solution convergence un-
til the end of the data sets. The convergence period was
excluded because the most crucial period during airborne
science campaigns is after ascending to the final altitude.
In this analysis, this was done by simply by evaluating er-
rors over only the last 2/3 of each flight.

For attitude error analysis, RMS stats of the platforms
roll, φ, pitch, θ, and heading ψ are reported with respected
to the Applanix posAV solution are reported.

Finally, a few internal metrics that proved useful through
the integration/debugging of the INS integration in RTGx
are summarized. These include postfit data residuals, and
statistics of the average solution corrections (i.e. ∆= Nom-
inal - Adjusted Solution ) for the 3 position axes.

4.1 Positioning Performance with Respect to
Reference Solution

Table 1 suggests that the K-PPP solution is significantly
smoother and more accurate with respect to the post-processed



Table 1. Statistics of positioning performance for d297 Kine-
matic Challenge Data Set

Filter-Only K-PPP/INS K-PPP
East RMS (cm) 6.1 12.8

North RMS (cm) 4.1 7.6
Vertical RMS (cm) 26.7 51.9

East σ (cm) 3.4 8.1
North σ (cm) 2.5 3.4

Vertical σ (cm) 17.5 51.7
bEast (cm) -5.0 -10.0
bNorth (cm) 3.2 6.8

bVertical (cm) -20.2 -4.1
Max(|bEast |) (cm) 17.1 24.2
Max(|bNorth|) (cm) 10.8 14.0

Max(|bVertical |) (cm) 48.4 153.3

reference solution. Against all of the metrics, the solu-
tion with INS outperformans the non-INS case. However,
one potentially misleading value is that the vertical mean
bias with respect to the reference solution is significantly
smaller for the non-INS case. Figure 4 suggests that this
is due to the GPS-only solution to not being able to keep
up with the increased tropospheric delay during the aircraft
descent.
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Figure 4. ENU components of position error for K-PPP with and
without INS for the d297 flight. At ≈ 2.75 hours into
the flight, the aircraft begins to descend. Both errors
increase significantly, but the solution with INS is able
to reduce the error growth as the tropospheric delay is
rapidly increasing.

While it is certainly true that a more sophisticated tro-
pospheric modeling method could have been adopted, this
serves to show a benefit of incorporating INS into the PPP
solution. For example, increasing the process noise for the
zenith delay could have avoided this occurring during de-

scent phase, but this would have come at the expense of
noisier vertical estimation when the aircraft was flying long
durations at the 11 km altitude.

Table 2 presents the same metrics for d324, y2008
Kinematic Challenge data set.

Table 2. Statistics of positioning performance for d324 Kine-
matic Challenge Data Set

Filter-Only K-PPP/INS K-PPP
East RMS (cm) 7.5 7.0

North RMS (cm) 2.3 6.2
Vertical RMS (cm) 12.4 30.6

East σ (cm) 7.5 4.8
North σ (cm) 2.1 5.6

Vertical σ (cm) 12.1 26.7
bEast (cm) -0.3 5.2
bNorth (cm) 1.0 -2.6

bVertical (cm) 2.6 15.0
Max(|bEast |) (cm) 39.1 38.2
Max(|bNorth|) (cm) 59.7 59.7

Max(|bVertical |) (cm) 82.4 149.7

Just as Table 1, Table 2, indicates that in general,
incorporating INS increased positioning performance with
respect to the reference solution. For d324, this is more
prevalent in the North and Vertical components, and in fact,
the East component is actually 0.5 cm worse in an RMS
sense with respect to the reference solution. This can be
attributed to a slightly slower, but much more stable, of the
East component of the INS solution with respect to the so-
lution without INS. This is illustrated in Figure 5.

4.2 Attitude Estimation with Respect to Reference
Solution

This section is included as another means to experimentally
validate the implementation on INS in RTGx, but obviously
only the solutions that included INS will have attitude es-
timates. The RMS agreement with the smoothed Applanix
PosAV attitude solutions provided in the Kinematic Chal-
lenge data sets are shown for d297 and d324 in Tables 3
and 4 respectively.

Table 3. Statistics of attitude estimation with respect to smoothed
Applanix solution for d297,y2008

Filter-Only K-PPP/INS
RMS Roll (deg.) 0.07
RMS Pitch (deg.) 0.15
RMS Yaw (deg.) 0.67

Tables 3 and 4 show very good agreement with re-
spect to the attitude provided by the Applanix system. It
should be noted that for flights that are primarily flying
straight and level that it is well known that the IMU yaw-
bias is most difficult to observe.
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Figure 5. ENU components of position error for K-PPP with and
without INS for the d324 flight. The solution with INS
converges in a more stable manner that the non-INS so-
lution, but has a slightly longer time constant. This
leads to the 0.5 cm increase in RMS with evaluating
errors over the last 2/3 of the flight.

Table 4. Statistics of attitude estimation with respect to smoothed
Applanix solution for d324,y2008

Filter-Only K-PPP/INS
RMS Roll (deg.) 0.06
RMS Pitch (deg.) 0.24
RMS Yaw (deg.) 1.01

4.3 Additional Metrics to Validate INS
Implementation

Throughout the debugging of the integration of INS into
RTGx, a few internal quality metrics were used to assess if
the INS system was properly integrated. The first of these is
simply evaluating statistics on the solved for position errors
with respect to the INS provided nominal values. That is,
how much did the GPS data have to correct about the INS
nominal. For completeness, these are compared to the same
metric for the GPS-only case, however, for the GPS-only
K-PPP run the nominal was provided by a pseudorange-
only solution. Table 5 shows an RMS summary of the
solved for position deltas with respect to the INS solution
and the pseudorange-only solution, respectively.

Table 5. Statistics of∆ X,Y,Z for d297 flight. The INS is able to
predict the corrected position within ≈ 10 cm.

Filter-Only K-PPP/INS K-PPP
RMS ∆XECEF (cm) 4.28 119.0
RMS ∆YECEF (cm) 9.6 193.15
RMS ∆ZECEF (cm) 8.38 139.9

In Table 5, not surprisingly, the pseudorange-only so-
lution is accurate to only a few meters, leading to solved
for position delta’s at the same level. However, given the
INS solution is able to provide a predicted solution much
closer to the solved-for solution, leading to only centimeter
level position adjustments.

Finally, spread of the pseudorange and carrier phase
postfit residuals provides an additional mechanism to de-
termine if there is a large systematic error in the processing
strategy. Table 6 compares the standard deviations of the
postfit GPS data residuals from the filter runs.

Table 6. Postfit residuals for d297 flight.
Filter-Only K-PPP/INS K-PPP
Phase (cm) 1.51 4.26
Range (m) 1.84 1.80

The significantly large spread of the phase residuals
for the non-INS case is attributed to the periods of flight
in which the tropospheric error is rapidly changing (accent
and descent). This is illustrated in Figure 6
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Figure 6. GPS Carrier-Phase residuals with and without includ-
ing INS for d297, y2008 Kinematic Challenge flight.
The non-INS phase residuals show large systematic er-
rors during the aircraft take-off and ascent due to the
rapidly changing troposphere delay.

Again, a more sophisticated troposphere delay mod-
eling approach and inclusion of a pressure altimeter could
be adopted to mitigate this for the GPS-only case, but Fig-
ure 6 serves to illustrate an advantage of including INS.
These metrics for the d324,y2008 are nearly identical as
the d297 data and are therefore omitted for brevity.

5 CONCLUSIONS AND FUTURE WORK
An INS processing capability has been integrated in JPL’s
RTGx GNSS processing software and its implementation



has been validated using real flight data. This paper de-
scribed the integration architecture and specific INS mech-
anization used. In general, as expected, including INS leads
to smoother and slightly more accurate position estima-
tion performance. This work has been done to specifi-
cally address the needs of the NASA UAVSAR project, but
will open RTGx to new applications including the process-
ing of kinematic ocean buoys and Earth-quake monitoring
with K-PPP/INS. Furthermore, it provides a basis to ex-
plore real-time signal receiver integer ambiguity resolution
approaches.
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