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Robust UAV Relative Navigation with DGPS, INS,
and Peer-to-Peer Radio Ranging
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Abstract—This article considers the fusion of Carrier-Phase
Differential GPS (CP-DGPS), peer-to-peer ranging radios, and
low-cost Inertial Navigation Systems (INS) for the application of
relative navigation of small Unmanned Aerial Vehicles (UAVs)
in close formation-flight. A novel sensor fusion algorithm is
presented that incorporates locally processed tightly-coupled
GPS/INS based absolute navigation solutions from each UAV in
a relative navigation filter that estimates the baseline separation
using integer-fixed relative CP-DGPS and a set of peer-to-
peer ranging radios. The robustness of the dynamic baseline
estimation performance under conditions that are typically
challenging for CP-DGPS alone, such as a high occurrence of
phase breaks, poor satellite visibility/geometry due to extreme
UAV attitude, and heightened multipath intensity, amongst
others, is evaluated using Monte Carlo simulation trials. The
simulation environment developed for this work combines a
UAV formation flight control simulator with a GPS constellation
simulator, stochastic models of the Inertial Measurement
Unit (IMU) sensor errors, and measurement noise of the
ranging radios. The sensor fusion is shown to offer improved
robustness for 3D relative positioning in terms of 3D Residual
Sum of Squares (RSS) accuracy and increased percentage of
correctly fixed phase ambiguities. Moreover, baseline estimation
performance is significantly improved during periods in which
differential carrier phase ambiguities are unsuccessfully fixed.

Note to Practitioners- This paper was motivated by the need
to enhance the robustness of CP-DGPS/INS relative navigation.
In particular, small UAVs exhibit fast dynamics and are often
subjected to large and quickly changing bank angles. This in
turn induces missed satellite observations and changes in the
phase ambiguity. This paper suggests leveraging the emergence
of Ultra Wideband ranging radios to directly observe the baseline
separation. In this paper, we outline the details of the algorithm
implementation. We then use a simulation to show that adding
UWB greatly helps to enhance the robustness of the carrier
ambiguity integer-resolving algorithm, which is necessary for
improved solution accuracy. This work has extensions to ground
vehicles, ocean buoys, and space vehicles. In future work we will
experimentally validate results.

Index Terms—Relative Navigation, Multi-Sensor Fusion, Dif-
ferential GPS/INS, Cooperative UAVs, Cooperative Remote Sens-
ing

I. INTRODUCTION

ACCURATE (i.e. centimeter-scale) and robust real-time
relative baseline knowledge between multiple Unmanned
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Aerial Vehicles (UAVs) is an enabling technology that has
many potential applications. For example, UAV-based cooper-
ative remote sensing, such as distributed Synthetic Aperture
Radar (SAR), would enable light-weight, small, and inexpen-
sive transmit/receive elements to be spread amongst formation
flying UAVs to form a single large coherent aperture. This
would offer the increased flexibility of multiple baseline con-
figurations (i.e. along or cross-track), the ability to synthesize
a larger imaging aperture (i.e. not limited by platform size),
and redundancy. However, for this concept to be feasible,
the relative navigation solution amongst the UAVs must be
precisely known (i.e. fraction of radar wavelength ranging
from 1/4th up to 1/100th of the wavelength for stringent
applications [1]). Likewise, precise relative navigation would
enable autonomous aerial refueling [2], and could lead to
aircraft fuel savings and active wind gust suppression when
coupled with recent advances in wake-vortex and wind-field
modeling [3], [4] and close formation flight control [5].

State-of-the-art relative navigation between aircraft in for-
mation flight is based on Carrier-Phase Differential GPS (CP-
DGPS) tightly-coupled with INS and has been demonstrated
to offer decimeter-to-centimeter-level relative positioning ac-
curacy between formation flying aircraft. In particular, a
system was developed for NASA Dryden’s F-18 autonomous
formation flight program using commercial off-the-shelf com-
ponents and was demonstrated to provide real-time 7-cm mean
error with 13-cm standard deviation error when compared to
post-processed DGPS solutions that incorporated static GPS
reference stations [6], [7]. To offer improved performance,
researchers have studied the fusion of additional sensors for
relative navigation. For example, Wang et al. [8] recently
considered the fusion of visual navigation beacons (VizNav),
INS, and CP-DGPS. Through a simulation study, they showed
improved estimation performance with a hierarchically dis-
tributed filter architecture that fused all sources when com-
pared to INS/VizNav or INS/CP-DGPS alone. Centimeter-
scale relative positioning has been demonstrated in formation
flight.

Recent studies have demonstrated the benefits of fusing
Ultra-Wideband (UWB) peer-to-peer pulsed ranging radios to
benefit GPS by offering enhanced robustness. For example,
MacGougan et al. [9] placed UWB radios at surveyed and
static locations to augment the GPS constellation, and experi-
mentally demonstrated better accuracy and an improved ability
to fix GPS integer phase biases during both static and kine-
matic applications, especially during periods of poor satellite
geometry. Broshears’ further conducted an investigation of the
potential for using UWB ranges between two GPS receivers
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to constrain the baseline and assist in reducing the ambiguity
resolution search space with the constrained Least-squares
AMBiguity Decorrelation Adjustment (LAMBDA) method
[10]. The approach showed promise over short baselines, and
determined that the bias-fixing algorithm could tolerate up to
4-cm of UWB range error with the constrained LAMBDA
approach. With their recent availability as low Size Weight
and Power (SWaP) commercially available products [11] UWB
radio ranging is an attractive navigation aid for autonomous
navigation systems [12] such as small UAVs in formation
flight.

The work described in this article leverages the recent
insight of using UWB ranging as an aid to CP-DGPS/INS
to offer an accurate and robust 3D relative navigation solution
for UAV close formation flight. The contribution of this work
is that a novel DGPS/INS/UWB fusion algorithm is devel-
oped and is assessed for the purpose of offering heightened
robustness to commonplace error sources that are known to
degrade the performance of ambiguity resolved CP-DGPS.
The premise of taking this approach is the fact that integer
fixed CP-DGPS/INS systems have already been demonstrated
experimentally to offer centimeter-scale relative navigation
accuracy [7]. Therefore, the role of fusing additional sensors,
and primary need for advancing the state-of-the-art, is to
increase robustness by enhancing the relative navigation filter’s
ability to correctly and quickly fix integers phase ambiguities,
despite the presence of challenging conditions. This is espe-
cially relevant for implementation on small UAV platforms due
to their fast dynamics and extreme-bank angles which often
lead to dropped satellite observations, poor satellite geometry,
and/or phase breaks.

The rest of this paper is organized as follows. Section II de-
scribes the overall fusion architecture and details the algorithm
formulations for both absolute and relative navigation. Section
III describes the West Virginia University (WVU) Phastball
UAV research platform, of which the simulation developed for
this work is based around. Section IV details the simulation
environment developed for this study and the design of the
Monte Carlo study. Section V first presents some intermediate
results by stepping through and individual simulation trial and
then presents the results of the Monte Carlo study. Finally,
Section VI offers a summary and conclusions.

II. SENSOR FUSION ALGORITHM FORMULATION

The goal of the algorithm developed in the article is to
achieve accurate and robust real-time estimation of the relative
3D navigation vector between two UAVs flying in close
formation. The two UAVs are denoted as UAVA and UAVB .
The fusion algorithm architecture is shown in Fig. 1, where
three sequential estimation stages are indicated.

In Stage 1, the absolute navigation state of each each UAV
is estimated locally by each UAV by tightly-coupling INS,
GPS psuedo-range, and GPS doppler measurements. During
Stage 2, the raw carrier-phase GPS observables from UAVA
are communicated to UAVB in order to provide for the
formation of double-differences, a two-way time of flight
UWB range measurement between the UAVs is obtained, and

Fig. 1. Architecture for UAV relative baseline estimation. Processing required
for one epoch of data.

the difference between the estimated absolute 3D position
solutions of UAVA and UAVB are subtracted to form an
observation in the relative navigation filter. The estimates of
Stage 2 are fed-forward to Stage 3, where the phase ambiguity
are resolved to integers and the relative navigation vector is
adjusted accordingly. The formulation details of each of the
three stages is presented next.

A. Nonlinear Estimator

The sensor fusion algorithms presented in the article are
executed using a nonlinear Unscented Kalman Filter (UKF)
with sequential measurement updates. For details on imple-
menting the UKF algorithm, the reader is referred to [13].
In this article, we identify the state vector, x, measurement
vector z, output vector, y, process model f , observation model
h, as well as, the process noise Q and measurement noise
R covariance assumptions used within the implementations
presented. These terms are related to each other by considering
the Kalman Filter’s classic predictor-corrector structure, over
discrete-time index k. The state prediction is facilitated by a
process-model

xk|k−1 = f(xk−1|k−1, uk, wk) (1)

and the measurement-update, or state correction, is conducted
by using the predicted states in the observation of measure-
ments

yk|k−1 = h(xk|k−1, dk, vk) (2)

where the process-noise is assumed to be distributed
wk∼N(0, Q) and the measurement-noise is assumed to be
distributed vk∼N(0, R). The process-model f provides for
a system input, u, and the observation model, h allows for
a system input d. For the purposes of remaining general, the
process-noise, wk and measurement noise, vk, is incorporated
within the respective nonlinear process, Eq. 1, and observation,
Eq. 2 models, and is not restricted to be additive noise on the
states, x, and measurements, z, as is in the classic Kalman
Filter [14].



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. *, NO. *, MONTH YYYY 3

B. Local Absolute Navigation
For the local UAV absolute navigation state estimation,

we start with a sensor fusion formulation similar to what
we have previously considered which is a 15-state loosely-
coupled GPS/INS [14] [15]. However, here adopt a tightly-
coupled GPS/INS architecture and therefore also need to
include estimation of the GPS receiver’s clock bias, clock drift,
and a residual wet tropospheric zenith delay, zw. We assume
that we are employing a dual-frequency GPS receiver on each
UAV, such that ionospheric delays are cancelled to the first
order by using the ionosphere-free linear combination [16] .
Therefore, the state vector consists of 18-states, including the
UAV’s local South, West, Down (L for local) position, rL,
and velocity, vL, the UAV body-axis (B for body) attitude,
[φ, θ, ψ], time-varying sensor biases of the UAV’s Inertial
Measurement Unit (IMU), b(1× 6) = bax,ay,az,p,q,r, the GPS
receiver’s clock bias, tb and drift rate, δtb, and the residual
wet zenith delay due to the troposphere , zw.

x =
[
rL(1× 3), vL(1× 3), φ, θ, ψ, b(1× 6), tb, δtb, zw

]T
(3)

where φ,θ,ψ are the UAV’s roll, pitch, and yaw angles respec-
tively.

1) Prediction: The state process-model, f , for position,
velocity and attitude (PVA) consists of integrating the kine-
matic equations from the previous-estimated navigation state
using the IMU sensor measurements as a model input vector,
u = [a(1×3), ω(1×3)]T , which are comprised measurements
of the UAV’s body-axis specific force, aIMU = [ax, ay, az]

T ,
and angular rate, ωIMU = [p, q, r]T . The position vector
prediction is simply an integration of the estimated velocity
states,

frl = rlk|k−1 = rlk−1|k−1 + vlk−1|k−1Ts (4)

where Ts is the filter update rate. The velocity state prediction
must consider that the time-varying attitude estimates define a
rotating frame, and therefore the IMU specific force measure-
ments must be transformed using a Direction-Cosine-Matrix,
DCML

B = DCM(φ, θ, φ)LB , that transforms them from the
body-axis to the local frame [17] prior to integrating over time,

fvl = vlk|k−1 = vlk−1|k−1+
(
DCML

Bk−1|k−1ak + gL
)
Ts (5)

where the acceleration due to gravity, gL =
[
0 0 g

]T
, is

defined in the local SWD navigation frame. Note that Eq.
5 is assuming that the IMU is measuring the specific force
at the aircraft center of gravity, CG, which is often not the
case. Therefore, it is appropriate to consider the impact of the
IMU’s lever arm offset from the CG, rIMU/CG, as follows,

aCG = aIMU + ω̇ × rIMU/CG + ω ×
(
ω × rIMU/CG

)
(6)

where rIMU/CG is defined in aircraft body, B coordinates,
which is defined as x positive forward, y positive starboard,
and z positive down. Next, the attitude is predicted, by
integrating ωIMU , concluding the UAV’s PVA prediction.φθ

ψ


k|k−1

=

1 s(φ)t(θ) c(φ)t(θ)

0 c(φ) −s(φ)

0 s(φ)
c(θ)

c(φ)
c(θ)

 [ωIMU

]
k

(7)

Where in Eq. 7 s(·), c(·) and t(·) are abbreviations for sine,
cosine and tangent respectively, and the matrix on the right
hand side is populated with the estimated attitude states from
the previous filter epoch, k − 1|k − 1.

The remaining filter states consist of IMU sensor biases,
GPS receiver clock parameters, and the residual wet zenith
delay of the troposphere, all of which are predicted using
stochastic models. In particular, the IMU sensor biases are
modeled using sensor noise density characteristics that are
typically reported on the IMU manufacturer’s specification
sheet, such that a sensor model is given as

bk|k−1 = bo + bk−1|k−1 + wb,k + ww,k (8)

where bk is the time-varying portion of the IMU bias modeled
with random-walk with wb,k defined by the manufacturer’s
reported ’in-run bias stability’. ww,k is the sensor’s wide-band
noise density defined by the reported Angular Random Walk
(ARW) for the gyros and Velocity Random Walk (VRW) for
the accelerometers. bo is the sensor’s initial or ’turn-on’ bias,
which is modeled as a random constant. The expected σ of bo
is also typically reported by the IMU manufacturer and this
uncertainty is handled by assigning this value as the sensor
bias estimate’s a prior error-variance when initializing the
filter. The GPS clock offset is predicted with the previously
estimated drift rate.

tbk|k−1 = tbk−1|k−1 + (δtbk−1|k−1 + wδt,k)Ts + wδtb,k (9)

Finally, the residual wet zenith delay is modeled as a slowly
time-varying stochastic parameter (i.e. a random-walk rate of
1̃0 mm/

√
hr [18]).

2) Measurement-Update: The measurement-update for the
absolute navigation filter, updates the predicted states using
raw GPS pseudo-range and pseudo-range rate (i.e. doppler)
measurements. Because a dual-frequency receiver is used, the
ionospheric-free linear combination, IF , is used to cancel
ionospheric delays to first order [16], [19]. Note, the IF
combination is done at the expense of a ≈ 3-fold increase
in measurement noise [16] which should be handled in
the assumed measurement error-covariance. The measurement
vector, z, consists of n, pseudo-range measurements, ρIF , and
n pseudo-range-rate measurements, ρ̇IF

z =
[
ρ1...n
IF ρ̇1...n

IF

]
(10)

.
The output-vector, y, uses the predicted state to compute the

expected observable and forms the filter’s Observed-Minus-
Computed (OMC), or innovation residuals. The observation
function for an individual pseudo-range measurement, hρ, of
satellite, j, to a user, u, is equal to the predicted geometric
range, which is determined from the norm of the predicted
user position vector and the satellite’s position vector that
is provided in the broadcast navigation data. In addition,
the additional range attributed to predicted clock bias, tb,
times the speed of light, c, and residual wet delay of the
troposphere in the zenith direction, zw, mapped into a line-
of-site delay by the use of an obliquity factor that is provided
as a function GPS satellite’s elevation angle, el., with respect
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to the users predicted location, M(el) [16]. To formulate the
geometric range, the estimated position vector, rl, must be
transformed into the WGS-84 Earth Centered Earth Fixed
(ECEF) coordinate system, denoted as E, that is used by the
GPS broadcast ephemeris, using the transformation approach
that is documented in many texts [20].

hρ = yρ = ‖rEu − rESatj‖2 +M(el.)zw,k|k−1 + ctb,k|k−1 + vρ
(11)

The observation function of the pseudo-range rate observa-
tions, projects the difference of the predicted velocity vector
and the satellite velocity vector to the unit vector between the
receiver and the satellite. Additionally, the range-rate attributed
to the predicted clock drift-rate is considered. Again, the
predicted velocity vector, vl, must be transformed into WGS-
84 coordinates. The observation function of the range rate from
a satellite, j, to user, u is given as

hρ̇ = yρ̇ = ‖vEu − vESatj1¯
j
u‖2 + cδtbk|k−1 + vρ̇ (12)

where 1
¯
j
u is the unit vector from user, u and satellite j that is

determined from the predicted position vector, rEu , and satellite
position, rESatj . the pseudo-range rates are from instantaneous
doppler measurements, and are effected by phase-breaks. Here,
we assume that the change in the tropospheric delay is negligi-
ble between epochs [16]. Within this study, the occurrence of a
phase break is assumed known a priori from a dual-frequency
data editing algorithm [21] , and therefore these measurements
are skipped over in the measurement-update.

The measurement-error covariance matrix, R is a square
2 × n sized diagonal matrix with the upper-left n diagonal
elements, v2

ρ, and the lower-right diagonal elements equal
to v2

ρ̇. For this study, vρ = 1m was used and vρ̇ = 8cm
are used for nominal values, which are scaled in run-time
according to the elevation angle of the particular GPS satel-
lite being modeled for a given observation. In particular,
the assumed error-variance is scaled by 1

sin(el.) . Elevation
dependent weighting is a standard approach to deal with model
uncertainties associated with the atmospheric delays [22].

C. Cooperative Relative Navigation Filter

The cooperative relative navigation filter uses the UWB
peer-to-peer range measurement as a direct measurement of the
baseline distance and a difference of both UAV’s local absolu-
tion position estimates to augment a local DGPS algorithm for
estimating the dynamic 3D relative position vector between the
UAVs. The DGPS algorithm uses double-differenced carrier-
phase GPS observables.

1) Prediction: The state vector for the relative navigation
filter, x, consists of the 3D relative position vector between
UAVA and UAVB in an Earth Centered Earth Fixed (ECEF)
frame , rA/B =

[
∆X ∆Y ∆Z

]
, time-varying biases that

correct the difference of the two local absolute navigation filter
solutions to the estimated relative navigation vector, δrA/B =[
δ∆X δ∆Y δ∆Z

]
, and the phase ambiguities, N on the L1

and L2 double-differenced carrier phase measurements

x =
[
rA/B δrA/B N i...n

L1 N i...n
L2

]
(13)

where the δrA/B states are included to take advantage of
the fact that the position estimation errors due un-modeled
error-source in the two absolute position navigation filters
are time-correlated. For prediction, the 3D relative position
vector and its bias with respect to the difference of the
two absolute solutions are modeled as random-walk, and the
phase ambiguities states are assumed to be random constants,
therefore, the prediction model for the 3D navigation vector,
f3DRel, is of the form

rA/Bk|k−1
= rA/Bk−1|k−1

+ w3D (14)

δrA/Bk|k−1
= δrA/Bk−1|k−1

+ wδ3D (15)

and the prediction model of the phase biases, fφ, is

Nk|k−1 = Nk−1|k−1 (16)

where the process-noise is zero. This is the case as long the
tracking of a particular satellite and the reference satellite is
continuous on both receivers used for the DGPS solution.

Whenever a phase break occurs, a white-noise reset is per-
formed on the impacted double-differenced phase ambiguity
estimate. A white-noise reset consists of resetting the estimated
phase bias to zero, resetting the estimate variance of the phase
bias to a large value (e.g. one second at the speed of light), and
zero-ing out the covariances of the phase ambiguity state and
all of the other filter states. For the purposes of this article, the
occurrence of a phase break is assumed to be known a priori
through the use of a dual frequency data editing algorithm
[21].

2) Measurement-Update: For the measurement-update of
the relative navigation filter, we first consider the observation
model of the undifferenced GPS carrier-phase measurements,
which are written as [16]:

φ = λ−1[r + Iφ + Tφ] +
c

λ
(δtu − δts) +N + εφ (17)

where the carrier-phase, φ, is in units of cycles of the wave-
length, λ, which is in units of meters, r is the geometric
range in meters, I is ionospheric delay in meters, T is the
tropospheric delay in meters, c is the speed of light in m/s, δt
are clock biases of the user’s receiver u and satellite transmitter
S in seconds, and ε represents the multipath error with units of
meters. Additionally, the unknown number of integer cycles,
N .

The primary observables for local-area DGPS applications
are double-differenced carrier-phase measurements, where,
first, two measurements from the same satellite, j are differ-
enced between the two user receivers, denoted as A and B,
to form single-differenced carrier-phase measurements

∆φjA,B = λ−1rjA,B +
c

λ
δtA,B +N j

A,B + εjφ,A,B (18)

where the satellite clock bias errors are eliminated. Fur-
thermore, whenever a short baseline between receivers A
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and B is assumed, the troposphere and ionosphere delays
are also eliminated. In order to further eliminate the error
attributed to the combined user’s receiver clock biases, δtA,B ,
two single-differenced measurements from satellites j and
k are subtracted to form double-differenced carrier-phase
measurements, which are indicated as ∇∆φj,kA,B . Double-
differences are often formed by selecting a high-elevation
satellite as the reference satellite (indicated in this paper as
k) and subtracting its single-difference measurement from all
other available single-difference measurements. With double-
differenced measurements, the only errors that remain are the
multipath errors and the ambiguity, which is known to be an
integer number of wavelengths of the carrier frequency.

The measurement vector of the relative navigation filter,
z, consists of n double-differenced phase measurements for
each the L1 and L2 frequency, the 3D relative position vector
estimated by differencing the two local absolute filter position
estimates, r∆abs

A/Bk|k−1
=
[
∆X ∆Y ∆Z

]
∆abs

, and the UWB
peer-to-peer range between the UAVs, RUWB .

z =
[
∇∆φL1

i...n,k
A,B ∇∆φL2

i...n,k
A,B r∆abs

A/Bk|k−1
RUWB

]
(19)

The observation function for an individual double-
differenced phase measurement, hφ, between satellite j and
reference satellite k on frequency f (i.e. L1 or L2) is defined
as

zφ = ∇∆φf
j,k
A,B = yφ =

[
−(1

¯
j
A − 1

¯
k
A)T

]
rA/Bk|k−1

+λfN
j
f+vφ
(20)

where the 3D relative position vector, rA/Bk|k−1
, is from the

filter prediction step, the phase ambiguity N j
f is from the fil-

ter’s prediction step, λf is the wavelength of the measurement
(i.e. L1 or L2), 1

¯
j
A is the unit vector from receiver A to satellite

j, and vφ is the measurement noise assumed for double-
differenced phase observables.The observation function for the
3D estimate relative position vector formed by differencing
the two absolute position estimates, h∆abs

, adds the estimated
biases to predicted 3D relative position vector and accounts
for the measurement noise of the two local absolute position
solutions

z3D∆abs
= r∆abs

A/Bk|k−1
= rA/Bk|k−1

+ δrA/Bk|k−1
+ v3D∆abs

(21)
where, again, the 3D relative position vector is from the filter
prediction.

The observation function of the UWB peer-to-peer range,
hUWB is the L2 norm of the 3D relative position vector

zUWB = RUWB = yUWB = ‖rA/Bk|k−1
‖2 + vUWB (22)

where the UWB peer-to-peer measurement is used as direct
measurement of the baseline separation between the GPS
receiver antenna phase center on UAVA and UAVB and
vUWB is the noise assumed for the UWB measurement. Note
that if there is a lever-arm between the GPS antenna and the
UWB antenna, it should be accounted for in Equation 22.

The measurement-error covariance matrix assumes 20 cm
meter-level errors in the range-only 3D relative navigation so-
lution, v∆abs

, 1 cm-level noise on the double-differenced phase
measurements, vφ, and 10 cm measurement error is assumed
for UWB measurement, vUWB . Therefore, the measurement-
error covariance, R, is of the form

R = diag(
[
v2
φ,1 ... v2

φ,n v2
∆abs

v2
∆abs

v2
∆abs

v2
UWB

]
(23)

D. Ambiguity Bias Fixing and State Adjustment

After each measurement update, the UKF estimated phase
ambiguities, which do not take advantage of the fact that
they are an integer number of wavelengths, are fed to an
integer ambiguity resolution algorithm along with their esti-
mated variance-covariance matrix. In particular, the LAMBDA
method [23], [24] was used for this implementation. The ob-
jective of the LAMBDA method find an Integer Least Squared
Solution (ILS) with respect to the estimated float ambiguities,
N̂φ, and corresponding variance-covariance estimate of the
phase ambiguities, PN̂φ,N̂φ , by searching a set of integer
grid points,Nφ, by minimizing the following relationship over
multiple candidate solutions [23]:

F (Nφ) =
(
N̂φ −Nφ

)T
P−1

N̂φ,N̂φ

(
N̂φ −Nφ

)
≤ χ2, Nφ ∈n

(24)
where the integer grid search space is defined by the size of
χ2.

With the integer-fixed biases, the 3D relative navigation
states are updated accordingly, by assuming that the integer
fixing is a deterministic process, using the following equation

xfix
nonN̂φ

= xfloat
nonN̂φ

− PnonN̂φ,N̂φ
PN̂φ,N̂φ(N̂φ −Nφ) (25)

where P refers to the estimated variance-covariance matrix for
the float solution, which particular sections identified by the
subscripts nonN̂φ, which refers to the states that are not phase
ambiguities and N̂φ, which refers to phase ambiguity states.
Bias fixing is done in a complimentary manner to the UKF,
such that the fixed ambiguities and the associated adjusted
relative navigation states are not fed to the next filter step, but
are instead saved as a separate estimate.

Not all attempts to fix biases to integer values will be
a success in the presence of errors. The specific method
employed as in acceptance test of the integer fixed phase
ambiguities, is the ratio-test [25]. The ratio-test tests how
close the float ambiguity estimates are to the best integer
ambiguity estimates when compared to the next best integer
ambiguity candidate. The best candidate, N1st

φ , and second
best candidate, N2nd

φ are the two candidates that minimize the
quadratic cost function, F (Nφ) of Equation 24 the most [25]

Accept N1st
φ iff

F (N1st

φ )

F (N2nd
φ )

≤ 1

C
(26)

where C is the critical value, which can be derived on-the-
fly to allow a fixed failure rate or set to a constant [25].
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Smaller values of C will lead to more candidates that fail,
but offers a less likely chance of incorrectly accepting a set of
incorrect integer ambiguities. A constant value is often used
for C, although this has been chosen empirically without a
rigorous justification [25]. Nonetheless, for this study, C was
set to 3 and held constant, as the main purpose of this work is
to assess the impact of including the UWB range information.

III. WVU PHASTBALL UAV
The WVU Phastball aircraft was designed to be a modular

and low-cost UAV platform that can support a wide range
of flight research topics. It uses a custom designed flexible
avionics package [26] which will be upgraded to include a
ranging radio in order to experimentally validate the results
of this simulation study. The Phastball design, shown in
Figure 2 has a 2.4 meter wingspan and a 2.2 meter total
length. The typical takeoff weight is 10.5 Kg with a 3.2 Kg

Fig. 2. WVU Phastball Research UAV design with main navigation compo-
nents indicated.

payload capacity. The aircraft is propelled by two brushless
electric ducted fans, each providing up to 30 N of static thrust,
offering a cruise speed of approximately 30 m/s. A recent close
formation flight experiment incorporating two Phastball UAVs
is shown in Figure 3.

Fig. 3. Summer 2013 Phastball close-formation flight.

IV. SIMULATION ENVIRONMENT

A. Overview
The simulation environment developed for this study incor-

porates a dynamic model of the Phastball UAV within Forma-
tion Flight simulation environment (WVU-FF-Sim), GPSoft’s

SatNav 3.04 Matlab Toolbox [27], a stochastic model for IMU
sensor noise based on a manufacture’s specifications [28], and
assumes a normal noise density on the UWB range measure-
ments. The WVU-FF-Sim’s dynamic models for the WVU
Phastball UAV were derived using flight data [29], and the
formation controller is based on Nonlinear Dynamic Inversion
(NLDI) control laws [30], of which control performance of the
simulation has been validated against actual formation flight
tests [3]. A bird’s eye view of a sample simulated trajectory
is shown in the top panel of Figure 4 where the typical
baseline separation between the UAVs in this simulation is
approximately 30 meters (bottom panel).
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Fig. 4. Simulated truth trajectory for 2 UAV formation flight (top). Baseline
separation of formation (bottom).

B. Model Details

Once reference trajectories for UAVA and UAVB are gen-
erated from WVU-FF-Sim, the corresponding dual-frequency
GPS pseudo-range, carrier-phase and doppler observables are
generated using the SatNav 3.04 Matlab Toolbox. To ensure
diversity with respect to satellite geometry and modeled atmo-
spheric delays, the origin of the flight is randomly initialized
to a new location on Earth for each simulation trial, and a
simulation start time (GPS time-of-week) is randomly selected.
Furthermore, IMU sensors are modeled with realistic errors
and UWB range measurements are developed by polluting
the actual baseline magnitude with measurement noise. A
summary of all of the models and error-source magnitudes
are listed in Table I.

As referenced in Table I, a modification was made in
the SatNav-3.04 to allow for the simulation of carrier-phase
breaks. To do this, first each phase arc is given a randomly
initialized ambiguity. Next, because the chance of a phase-
break occurrence goes up with extreme aircraft attitude, a
likelihood was assigned to perform a uniform random test any
time a UAV was beyond a specific φ threshold. Furthermore,
to model satellite visibility dependent on UAV attitude, the
elevation angle of each simulated satellite’s line-of-sight vector
was transformed into the aircraft body-axis and an assumed
mask was applied [34]. To illustrate these models, a sample of
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TABLE I
SIMULATED ERROR SOURCES ON SENSOR OBSERVATIONS.

Error-Source Model Parameters Reference/Notes

IMU Accelerometers Initial-Bias σ = 50mg , VRW= 0.2
m/s√
hr

Analog Devices, Inc. ADIS16405 [28]

IMU Rate Gyroscopes Initial-Bias σ = 3 °
s

, ARW= 2.0 °√
hr

Analog Devices, Inc. ADIS16405 [28]
GPS Thermal Noise ρ ∼ σ = .32m, φ ∼ σ = 0.16λm Sat-Nav-3.04 [27]

GPS Multipath 1.0 Intensity : σ = 0.4m, τ = 15min. Sat-Nav-3.04 [27], Intensity varied randomly.
GPS Tropospheric Delay % of error assumed handled by broadcast cor-

rection (randomly initialized, see set-up below)
Sat-Nav-3.04 [27], Modified Hopfield algorithm
[31]

GPS Ionospheric Delay 50% error assumed handled by broadcast cor-
rection

Sat-Nav-3.04 [27], Raised half-cosine [32]
scaled by FAA WAAS obliquity factor [20]

GPS Receiver Clock Bias Initial-Bias σ = 30ns, δτb = 100ns
s

Tuneable
GPS Phase Ambiguity Random initialization and phase breaks corre-

lated with UAV attitude
See description in this paper. Varied from 0.5%
to 5.0% likelihood

GPS Broadcast Orbits/Clocks Orbits σ = 100cm Clocks: σ = 2.5ns International GNSS Service [33]
UWB Range Measurement Error σ = 10cm Time Domain P410 Radio [11]

UAV number of satellites in-view, roll angle, φ, and double-
difference phase arc on GPS L1, ∇∆φL1 is shown in Figure
5 .
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Fig. 5. Simulated satellite visibility (top) and phase-breaks (bottom) taking
into account UAV attitude (φ angle shown in middle for reference).

In Figure 5 in the absence of any phase-breaks, the ∇∆φL1

would be absent of discontinuities.

C. Monte Carlo Set-up
Using there error-source models listed in Table I, each

Monte Carlo simulation trial was randomly initialized as
follows:
• Break likelihood ≥ φthresh: Uniformly selected from 0

to 10%, with φ threshold of 30°;
• UWB range noise: σ uniformly selected from 2.5 to 10

cm;
• IMU Precision: Noise densities scaled linearly from

ADIS-16405 [28] IMU, uniformly selected from 0.5 to
1.5;

• Troposphere Residual Delay: Scaled linearly, uniformly
selected from 0.1 to 0.9;

• Multipath Intensity: Uniformly selected from 0 to 1.
In total 750 trials were run for this study. Each flight was
simulated for 180 second duration and GPS, IMU and UWB

measurements were generated for fusions at a rate of 10 Hz.
For each trial the local absolute navigation filters are run first,
and then the relative navigation filters with and without UWB,
using the same CP-DGPS and INS measurements.

D. Ranging Radio System

For this simulation study, the particular UWB ranging radio
system considered is Time Domain’s P-410 [11], which is
shown in Figure 6. For this UWB system, a system trade

Fig. 6. Time Domain’s P-410 UWB Module

was developed and presented in our preliminary work on
this topic [35] in terms of maximum measurement range,
communications throughput and available update rate. In that
study, it was determined that this particular UWB ranging
system was capable of providing up to 200 meters of peer-
to-peer range measurements at an update rate of 10 Hz, while
allowing for up to 256 bytes of communication throughput. To
assist the reader when considering UWB integration in their
own application, they are referred to [35] , where the models
used to make these assessments are detailed.

V. RESULTS AND DISCUSSION

A. Example Simulation Trial

To facilitate the discussion of the results, first, some in-
termediate results from a single simulation trial are provided
as an example. The results are from the simulation that is
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consistent with the satellite visibility and break model plot
shown in Figure 5. An example of the local absolute navigation
performance for a single UAV is shown in Figure 7.
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Fig. 7. Example performance of absolute navigation filter. Position error (top).
Attitude error (middle). Gyro bias estimate (solid line) vs. simulated gyro bias
and noise (dots) (bottom).

For this particular simulation trial, the IMU Errors were
scaled to 0.86 with respect to ADIS-16405 specification sheet
reported noise densities [28], the likelihood of phase breaks
was 4.05% when the UAV was ≥ 30°, the σ of the UWB range
error is 7.95 cm, the start time was 1019 seconds in the GPS
week, and the origin was 43.16°latitude and 56.31°longitude.
As expected the vertical solution has the largest error. The
attitude estimation is ≈ 1°-level accurate, which is consistent
with our previous experimental studies [14], [15], and the IMU
sensor biases are estimated correctly.

Finally, using the same simulation trial of which one of
the absolute navigation performance was shown in Figure
7, the relative baseline estimation performance of the fused
DGPS/INS/UWB solution is shown in Figure 8. In Figure 8,
the dropped satellites and phase breaks that occur during large
aircraft roll angles, as shown in Figure 5, lead to periods in
which the ratio test fails and the float solution is accepted.
Overall, 68% of the epochs successfully pass the ratio-test.
Because of the incorporation of UWB range measurements,
the float solution baseline estimation error remains under 10cm
for most of the flight.

B. Monte Carlo Results

Table II summarizes the ambiguity fixed baseline estimation
performance with and without the inclusion of the UWB peer-
to-peer range measurements for 750 Monte Carlo trials. In this
analysis, the primary metric we consider for performance is
3DRSS .

3DRSS =
√
E2
XRMS

+ E2
YRMS

+ E2
ZRMS

(27)

In Table II the top 6 rows report statics only calculated
using epochs that pass the LAMBDA ratio acceptance test
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Fig. 8. Example performance of the DGPS/INS/UWB relative navigation
filter comparing the float solution to the fixed or float solution. 68% of this
epochs were successfully fixed during this simulation trial.

TABLE II
DYNAMIC BASELINE ESTIMATION PERFORMANCE STATISTICS OF THE

INTEGER-FIXED EPOCHS, ALONG WITH STATISTICS OF FIXING
EFFICIENCY.

750 Trials with UWB without UWB
% of Trials
with 3DRSS

<= 10cm
99.60 98.80

Median Fixed
3DRSS (cm) 2.82 2.78

Mean Fixed
3DRSS (cm) 5.85 477.84

σ Fixed
3DRSS(cm) 56.55 8993.38

Min Fixed
3DRSS(cm) 0.43 0.43

Max Fixed
3DRSS (cm) 1368.04 220509.60

Median % of
Epochs Fixed 58.48 27.34

Mean % of
Epochs Fixed 53.92 30.89

σ % of
Epochs Fixed 32.36 24.27

Min % of
Epochs Fixed 0.11 0.11

Max % of
Epochs Fixed 100.00 100.00

criteria. The top row is an indication of the overall reliability
of correctly fixing. In particular, 99.6% and 98.8% of the
reported fixed solutions have a total 3DRSS estimation error
of under 10 cm with and without UWB respectively. This
indicates, that in these trials all epochs that were fixed,
were done so correctly. Further, in a median sense, the fixed
solutions with and without UWB are nearly identical. This
is consistent with the belief that UWB should not be viewed
as a means to improve accuracy, but to improve accuracy of
robustness. At first glance it may seem that including UWB
range measurements offers little improvement. However, if we
consider the remaining 0.4 % for UWB and 1.2% indicated
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trials in which an epoch was reported fixed for UWB and
without UWB respectively, we see that the severity of the
incorrectly fixed epochs without UWB ranges is far worse.
This is indicated by considering the mean fixed error in
row three, which suggests that the trials that have epochs
reported incorrectly without UWB are drastically wrong in
comparison with UWB ranging included. That is the mean
error is skewed two orders of magnitude without UWB, while
remaining that same order with UWB. This claim is further
substantiated by comparing the σ’s reported in row four, which
show more consistently results when UWB peer-to-peer ranges
are includes. Finally, the maximum 3DRSS error of the 750
trials is significantly (several orders of magnitude) lower for
the filters that use peer-to-peer ranging.

The true benefit of including UWB peer-to-peer ranging
becomes more apparent when looking at the improvement
with respect to comparing the % of epochs successfully fixed.
These metrics are reported in the second half of Table II.
Both in a mean and median sense, the inclusion of the UWB
range measurements leads to ≈20% more epochs successfully
fixed. Because it is less informative to independently consider
the estimation performance of fixed solution without also
considering the % of epochs that were fixed, we present Table
III, which normalizes the fixed 3DRSS estimation performance
by the % of epochs fixed trial-by-trial. In Table III, the

TABLE III
BASELINE ESTIMATION PERFORMANCE STATISTICS OF FIXED SOLUTION,

NORMALIZED BY % OF EPOCHS FIXED.

750 Trials with UWB without UWB
Normalized % of Trials
with 3DRSS <= 10cm

99.9 45.2

Normalized Median
Fixed 3DRSS (cm) 5.35 10.17

Normalized Mean
Fixed 3DRSS (cm) 48.53 22879.17

Normalized σ
Fixed 3DRSS (cm) 575.02 462595.85

Normalized Min
Fixed 3DRSS (cm) 1.59 1.69

increased level of robustness by including the peer-to-peer
range measurements is much clearer. For instance, even after
penalizing 3DRSS by fixing efficiency rate, 99.9% of trials
still exhibit better than 10 cm performance when the UWB
measurements are included. This is more than cut in half for
the trials without UWB. Further, now the median statistic is
around two-fold better for the UWB case than without UWB,
whereas the reported medians were nearly identical in Table
II.

Finally, we can draw additional insight if we simply com-
pare 3DRSS for all epochs. That is, irrespective of successfully
fixing ambiguities. This represents the estimation filters overall
best solution, and includes all the epochs in which the fixed
solution was not accepted and the float was kept along with the
epochs that were successfully fixed (e.g. full blue dot series
in Figure 8 for each trial). These statistics are shown in Table
IV. In Table IV, the median performance with UWB remains
under 10cm, which in the case of not including UWB is now
greater than meter-level performance. Furthermore, over 50%

TABLE IV
STATISTICS OF BASELINE ESTIMATION PERFORMANCE USING OVERALL

SOLUTION (BOTH FIXED AND NON-FIXED EPOCHS).

750 Trials with UWB without UWB
Median Overall
3DRSS (cm) 7.73 168.31

Mean Overall
3DRSS (m) 42.83 110.59

% of Trials with Overall
3DRSS <= 10cm

54.00 1.60

% of Trials with Overall
3DRSS <= 50cm

67.60 16.40

% of Trials with Overall
3DRSS <= 1m

70.40 35.33

of trials have an overall 3DRSS of less than or equal to 10
cm, whereas this is less than 2% without UWB, and 70% of
flights are less than one-meter while this is only 35% without
UWB.

Finally, we can gain insight on the baseline estimation
performance improvement that is offered by incorporating
the UWB ranging measurements by looking at the overall
cumulative distribution function of the 3DRSS estimation error
of the 750 trials. In Figure 9, the impact of peer-to-peer
range measurements becomes clear. In particular, the CDF
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Fig. 9. Cumulative distribution of the 3DRSS estimation error over the 750
Monte Carlo simulation trials, where the estimation error is evaluated over all
the epochs of each flight (i.e. irrespective of being successfully fixed).

of 3DRSS is much steeper when UWB measurements are
included, indicating better performance despite the challenging
simulated conditions.

VI. CONCLUSION

This article considered the incorporation of UWB peer-
to-peer range measurements to assist DGPS/INS dynamic
baseline estimation of UAVs flying in close formation. A novel
fusion formulation was developed and evaluated within a sim-
ulation environment. The benefit of incorporating UWB peer-
to-peer ranges when confronted with scenarios that typically
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degrade DGPS performance including poor satellite geometry
and an increase level of phase breaks was characterized
with the use of a Monte Carlo analysis. Whenever phase
ambiguities are correctly integer resolved, there is no need
for incorporating UWB ranges, however in the face of DGPS
challenged conditions, which regularly occur on small UAVs
with fast dynamics, there is a clear benefit of incorporating
this additional navigation aid. In particular, the ability to fix
integer phase ambiguities correctly is significantly increased
and the float solution is much more accurate when UWB
peer-to-peer ranging is incorporated in the relative navigation
filter. In the future, we plan to offer experimental evaluation
of the presented fusion approach using the Phastball UAVs
while flying in formation. In addition, it will be important
and interesting to consider the robustness of the algorithm
performance to independent sensor reliability concerns (e.g. la-
tent transmission of carrier phase observable, unreliable UWB
ranging, etc.), we plan to pursue this in a future investigation.
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