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Abstract—We present an analysis of the positioning per-
formance of tightly-coupled Precise Point Positioning inertial
navigation using two long-baseline flight data sets that include
data from a navigation-grade Inertial Measurement Unit. The
benefits of integrating inertial navigation with Precise Point
Positioning are evaluated when using various GPS orbit and
clock products (i.e., broadcast, real-time, and final), and whenever
different troposphere models are adopted. We show that the
positioning performance of PPP/INS, when using orbit and clock
products generated in real-time is at the same level of accuracy
as PPP when using post-processed orbit and clock products.
In addition, we show that significant benefits with respect to
solution convergence are available with tight-INS, leading to a
greater than 30% reduction in three-dimensional (3D) Root Mean
Squared (RMS) positioning errors. For example, when using
real-time orbit and clock products with tightly-coupled inertial
navigation, the mean and standard deviation of the position
errors with respect to ambiguity-fixed post-processed reference
solutions are reduced from 19 cm and 28 cm, to 15 and 18 cm,
respectively. Furthermore, when using inertial data, a 10 cm or
greater reduction in the 3D RMS position error is shown to be
independent of the quality of the a priori nominal troposphere
and troposphere modeling approach adopted.

Index Terms—Precise Point Positioning, Inertial Navigation,
Tightly-Coupled Navigation, Real-Time PPP, Airborne Geodesy-
Precise Point Positioning, Inertial Navigation, Tightly-Coupled
Navigation, Real-Time PPP, Airborne Geodesy.

I. INTRODUCTION

Airborne geodetic techniques are superior to their terrestrial
counterparts with respect to both economy and efficiency [1].
Additionally, airborne geodesy allows for mapping remote
areas that would otherwise be inaccessible. A cornerstone
for most airborne geodetic measurements is the accurate
determination of the aircraft position and orientation. For
this reason, airborne geodesy was not widely utilized until
the advent of Global Navigation Satellite Systems (GNSS).
Now – with precise GNSS positioning techniques – airborne
geodesy is booming within several domains including: solid
Earth monitoring (e.g., crustal deformation) [2]–[4], fluid
Earth monitoring (e.g., ice sheet or sea-level monitoring) [5]–
[7], and geoid determination [8], [9]. Despite the success of
these airborne geodetic methods, the increased availability and
reliability of accurate aircraft positioning remains an important
enabling technology in support of future scientific endeavors.

Precise GNSS processing techniques can be broadly put
into two categories: (1) single-receiver processing with undif-
ferenced observations (i.e., Precise Point Positioning (PPP)),
and (2) carrier-phase differential GNSS (CP-DGNSS) pro-
cessing (e.g., Real Time Kinematic (RTK) or Network RTK

(NRTK) ). CP-DGNSS processing strategies utilize additional
static GNSS reference receivers to mitigate correlated error
sources through cancellation by data differencing (e.g., at-
mospheric delays, ephemeris errors, and clock biases) [10],
whereas PPP techniques rely on global correctors for the
GNSS orbit and clocks along with models and dual-frequency
data to mitigate these errors [11], [12].

The most common CP-DGNSS configuration is RTK, which
consists of a single static GNSS reference receiver at a
well-known location transmitting data to the roving platform
so that double-differenced observables can be formed. This
configuration works well for short-baseline separation between
the mobile and reference receiver locations, and can readily
produce centimeter-level positioning errors for airborne kine-
matic applications [13]–[15]; however, in this configuration, it
is well-known that the positioning errors grow in proportion to
the distance between the roving and reference receivers [16].
As such, RTK with successful integer ambiguity resolution is
only feasible for a roughly 10 km radius around the reference
receiver [10].

The maximum separation distance between the reference
and roving receivers is greatly extended by using a network
of static GNSS receivers, i.e., NRTK [17]. The NRTK
approach allows for seperations of approximately 100 km.
However, it has recently been shown that NRTK network
density spacing of less than 18 km is necessary to reduce
network-side GNSS error-sources to a level that the roving
receiver’s multipath errors are the dominant error-source [18].
Unfortunately, however, even the extended range of NRTK
remains problematic for airborne sensing applications that can
easily span 100s of km and oftentimes carry out missions in
remote locations that do not have a dense GNSS reference
network.

Another configuration, known as PPP-RTK, has been re-
cently developed to leverage a network of static GNSS sta-
tions and extend upon the maximum baseline separation of
RTK [19]. The PPP-RTK method resolves the carrier-phase
ambiguities for the network, and provides that information
in addition to precise orbit and clock information utilized by
traditional PPP to accurately determine the platform’s position
[20]. However, this positioning technique is subject to the same
baseline limitation as NRTK.

To fully overcome the limitation imposed by requiring
proximity to GNSS reference stations, the PPP processing
strategy is the most promising precise GNSS processing
technique for many specialized airborne geodetic applications.
Several recent studies have shown that the accuracy of PPP
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with respect to CP-DGNSS is comparable. For example, for
static positioning, Colombo et al. show a 10 cm agreement,
after PPP filter convergence [21]. Additionally, for kinematic
applications, Honda et al. show decimeter-level positioning
error agreement between RTK and PPP [22]. These studies
show that PPP and RTK produce similar positioning accuracy
after an initial convergence period of the PPP filter. This point
was elaborated on by [23] where it is concluded that additional
observations (e.g. multi-GNSS, inertial navigation) are needed
to reduce the convergence period of PPP.

Recent attention has been focused on reducing the conver-
gence period of PPP [24]. Of the techniques considered, the
two most prevalent are: (a) leveraging the use of observa-
tions from multiple GNSS constellations [25], [26], and (b)
integrating PPP with Inertial Navigation Systems (INS) [27]–
[29]. While the RTGx supports multi-constellation GNSS data
processing following the first consideration, this paper follows
the second consideration and details the tight-integration INS
within RTGx, and assesses its benefits for airborne kinematic
applications.

This work is a significant extension of our work in [30] and
[31]. In Watson (2016) [30], tight-integration of INS within
PPP filters was conducted using simulated data in order to
demonstrate exactly when and how much the incorporation
of INS is beneficial for airborne kinematic PPP applications.
In the simulation study, it was determined that INS is most
important for accurate positioning when confronted with high-
multipath, poor troposphere models, and low-quality GNSS
orbit and clock products. Then, using recorded flight data
provided by the National Geodetic Survey’s (NGS) Kinematic
Processing Challenge , our work in Gross (2015) [31]
validated the implementation of tightly-coupled INS models
in JPL’s RTGx software by comparing PPP/INS and PPP filter
solutions to post-processed reference PPP solutions.

In this article, the benefits of incorporating tight-INS in PPP
filters when considering: (1) the accuracy (i.e., latency) of the
orbit and clock products, and (2) the troposphere modeling
approach are presented in order to offer insight to those
considering the use of PPP for their particular application.
First, a review of the details of tight-INS integration are
presented. Next, two GPS/INS data sets recorded during long-
baseline (i.e., ≥ 700 km) flights over Alaska are used to
process PPP filters with and without the incorporation of tight-
INS. Then the sensitivity of tight-INS benefits are shown
when using: the GPS broadcast ephemeris, NASA’s Global
Differential GNSS Service (GDGPS) real-time GNSS orbit
and clock products, and JPL’s final post-processed orbit and
clock products is considered. Finally, an assessment of the
INS benefit sensitivity to troposphere modeling approaches is
presented. A final contribution of this study is to share with
the community that the JPL’s RTGx software incorporates a
new tight-INS capability, so that it may be considered for use
in airborne geodetic applications.

The rest of this article is organized in the following manner.
The next section will provide background information on the
processing software used in this study. Then the integration
architecture and INS formulation will be covered. Finally, an
analysis of flight data sets processed using varied ephemeris

and troposphere products is presented to demonstrate the
benefits of tight-INS/PPP integration.

II. BACKGROUND

This section provides a short overview of the GNSS soft-
ware tools and data products developed at JPL that are used
in this study.

A. GIPSY-OASIS

JPL’s GNSS-Inferred Positioning System and Orbit Analysis
Simulation Software package (GIPSY-OASIS) has been the
primary geodetic and positioning software for several NASA
missions: TOPEX/Poseidon [32], JASON [33], and GRACE
[34] low Earth orbiting spacecraft. Additionally, it is opera-
tionally used to generate JPL’s precise GPS orbits and clock
products [35]. GIPSY-OASIS is licensed for free by Caltech
to academic institutions for research purposes.

B. JPL’s Global Differential GNSS System (GDGPS)

The Global Differential GPS (GDGPS) System is a GNSS
monitoring and augmentation system that is composed of a
large network of GNSS receivers and real-time processing
software. Currently the real-time processing software is RTGx,
which produces sub-decimeter real-time kinematic position-
ing for a large number of GNSS tracking sites, globally
[www.gdgps.net].

C. RTGx

JPL’s new geodetic and navigation GNSS processing soft-
ware, RTGx [36], is a redesign of JPL’s GIPSY-OASIS and
Real-Time GIPSY software libraries and can be configured for
real-time or post-processed GNSS orbit and clock determina-
tion, Low-Earth Orbiter (LEO) precise orbit determination, or
PPP for both static and kinematic applications. RTGx supports
multi-constellation GNSS and inherits unique features from
the legacy GIPSY software, such as a single-receiver integer
ambiguity resolution [37]. RTGx is operationally used with the
GDGPS to generate real-time GNSS products, and it underlies
the navigation software for the on-going development of the
U.S. Air Force’s next generation GPS operational control
segment (OCX) [38].

III. ALGORITHM FORMULATION

This section provides an overview of the PPP/INS integra-
tion architecture and a detailed discussion of the INS formu-
lation currently utilized within RTGx. The PPP observation
models will not be covered in this paper as they were not
modified within RTGx for this study. For a review on the PPP
observation models, the reader is referred to [11].
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A. Integration Architecture

The integration of INS with GNSS is possible at different
levels, namely: loosely-coupled, tightly-coupled or deeply-
coupled [39]. In a loosely-coupled architecture, GNSS and
INS are processed individually and then combined in a Kalman
filter at the state-estimate-level. In a tightly-coupled architec-
ture, INS estimates are used to model individual GNSS observ-
ables before combining in a single centralized estimation filter.
These two integration methods have been used extensively
for kinematic applications [27], [28], [40], where it has
been shown that estimation performance is similar for both
integration architectures for docile platforms, but the tightly-
coupled architecture is known to have an advantage in more
dynamic situations or situations with few GNSS observations.
The deeply-coupled integration architecture utilizes the inertial
information within the correlation process of the receiver’s
base-band processor [41]. This approach has the benefit of
better tracking and re-acquisition of GNSS signals that are
at reduced power levels [42]. However, deeply-coupled inte-
gration requires GNSS receiver modifications and is therefore
not applicable for use in RTGx. As such, the tightly-coupled
GNSS/INS architecture was adopted for integration in RTGx.

Schematically the tightly-coupled architecture is shown in
Fig. 1, which depicts the estimation of GNSS observables,
within the Kalman Filter ( in our case RTGx uses a func-
tionally equivalent Square Root Information Filter (SRIF) ),
using the inertial data and precise ephemeris information.The
models predicts error-states using the difference between the
INS predicted GNSS observables and the measured GNSS
observables. For the PPP/INS filter’s the estimated state vector
is shown in Eq. 1, and is composed of:
• δΨib - 3 INS attitude errors, where attitude is defined

between the Earth-Centered-Intertial ECI (i) and aircraft
body-axis (b) frames;

• δvi - 3 INS velocity errors in ECI;
• δ ri - 3 INS position errors in ECI;
• bb

a - 3 IMU tri-axial accelerometer sensor biases in the
aircraft body-axis;

• bb
g - 3 IMU tri-axial gyroscope sensor biases in the aircraft

body-axis;
• δ tu - receiver clock bias;
• Tw - wet zenith tropospheric delay estimate;
• N1... j - GNSS carrier-phase bias estimates.

x =



δΨib
δvi

δ ri

baccel
b

bgryo
b
δ tu
Tw
N1
...

N j


(1)

An additional important aspect of tight-GNSS/INS depicted
is Fig. 1 is the closed-loop nature of the system. In particular,

Fig. 1. Tightly-coupled GPS/INS integration schematic

the estimated IMU sensor biases are fed back to correct the
raw IMU measurements in order to reduce the INS prediction
errors. Furthermore, after each GNSS update, the position,
velocity and attitude estimates determined by the INS are
corrected by the estimated error-states. For the position and
velocity estimates this is done with simple subtraction. For
the attitude, small angle approximations are used to correct
the INS estimates, as shown in Eq. 2

Ci
b = (I−δΨib)Ĉi

b, (2)

where Ĉi
b is the body-to-ECI direction cosine matrix (DCM)

populated with the INS estimated attitude.

B. Inertial Navigation System Mechanization

As depicted in Fig. 2, the INS mechanization is comprised
of three steps: attitude update, velocity update, and position
update. This section summarizes the INS mechanization in the
Earth-Centered Inertial (ECI) reference frame, which is offered
in greater detail in numerous texts [39], [43]. The ECI INS
mechanization was selected for implementation in RTGx, as
ECI was already the frame used for assimilated data in RTGx’s
other applications (i.e., GNSS constellations, LEO satellites,
etc.)

1) Attitude Update: To integrate attitude, a 3rd-order
Runge-Kutta integrator was used to propagate the platform’s
body-to-ECI quaternion [43], as shown in Eq. 3. Where I
is an identity matrix, β is composed of the raw gyroscope
measurements, as defined in Eq. 4, and the subscript t signifies
the IMU time step (e.g., t−2 is using data from two discrete
sample intervals in the past).

q̂t = [I +
1

12
(β̂t +4β̂t−1 + β̂t−2)+

1
12

(I +
1
4

β̂t)β̂t−1β̂t−2+

1
12

β̂t(β̂t−1−
1
2

β̂t−2)]q̂t−2 (3)

With the 3rd-order integrator, attitude estimates are predicted
at one-half the IMU data-rate (i.e., 200 Hz IMU data yields
100 Hz attitude estimates). The accumulation of integration
and sensor errors can cause the integrated quaternion to lose
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Fig. 2. Inertial navigation propagation schematic

β̂t+1−n =


0 (3(δθ1)t+1−n− (δθ 1)t−n) (3(δθ2)t+1−n− (δθ2)t−n) (3(δθ3)t+1−n− (δθ3)t−n)

(−3(δθ1)t+1−n +(δθ 1)t−n) 0 (3(δθ3)t+1−n− (δθ3)t−n) (−3(δθ2)t+1−n +(δθ2)t−n)
(−3(δθ2)t+1−n +(δθ2)t−n) (−3(δθ3)t+1−n +(δθ3)t−n) 0 (3(δθ1)t+1−n− (δθ 1)t−n)
(−3(δθ3)t+1−n +(δθ 3)t−n) (3(δθ2)t+1−n− (δθ2)t−n) (−3(δθ1)t+1−n +(δθ 1)t−n) 0


(4)

its required orthonormality. To prevent this from happening, a
periodic normalization of the quaternion was implemented.

2) Velocity Update: Using the updated INS attitude, the
IMU specific force measurements are transformed from the
body-frame to the ECI frame by multiplying with the the body-
to-ECI DCM, Ci

b, as shown in Eq. 5, where the estimated body-
to-ECI DCM is determined from the updated quaternion, using
the relationships found in many texts [44]. approxiamatly

∆vi =Ci
b∆vb (5)

With the specific force measurement transformed into the ECI
reference frame, the velocity is calculated via Euler integration
as shown in Eq. 6.

vi
k|k−1 = vi

k−1|k−1 +∆vi + γ
i
τ (6)

In Eq. 6, the updated INS velocity estimate is the summation
of the previous velocity estimate (k− 1|k− 1) and the IMU
measured change in velocity, ∆vi. Additionally, the component
of acceleration that is due to the Earth’s gravity in ECI, γ i,
must be modeled and integrated over the time-step, τ . For this
application the Earth’s gravity was modeled using the EGM-
2008 gravity-field [45] out to degree and order 200.

3) Position Update: Finally, the position is updated from
the previous position estimate via trapezoidal integration.

ri
k|k−1 = ri

k−1|k−1 +(vi
k|k−1 + vi

k−1|k−1)
τ

2
(7)

While the estimation filter used in the study is realized in an
ECI frame; for georeferencing applications, position must be
known in an Earth Centered Earth Fixed (ECEF) frame. There-
fore, in practice, before the estimated position and velocity are
output to the end user, a position and velocity transformation
from ECI to ECEF is conducted, which is based on the Earth’s
rotation rate, polar motion model, and time past which the ECI
and ECEF frames were co-incident (i.e., typically the J2000
reference epoch) . The specific ECI-to-ECEF transformation
realized within RTGx is the transformation adopted by the
International Earth Rotation Service (IERS) [46].

C. Error-State Model

As discussed above, a portion of the estimated state vector
consists of the INS error-states. As such, the dynamics of the
INS error-states must also be modeled. From the error-state
dynamic equations, a state transition matrix (STM) is formed
via a power-series expansion of the Jacobian of the system of
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equations in order to propagate the error-states from one time-
step to another. This section will briefly review the elements
of the INS error-state STM. For more details, comprehensive
discussions of INS error-state models are offered by Groves
(2013) [39] and Jekeli (2001) [43] on which the discussion
herein is based upon.

1) Attitude Error Propagation: A small angle assumption
is made when modeling the dynamics of the attitude errors.
This allows the attitude error to be expressed as a vector of
perturbations in the body frame with respect to the inertial
frame, δΨi

ib. If the attitude error is expressed as a DCM, then
the error associated with the attitude is

[δ Ψ̇ib∧]≈ I3−δCi
b, (8)

where [δ Ψ̇ib∧] represents the skew-symmetric matrix com-
posed of small angle perturbations. The attitude error par-
tial derivatives are calculated by differentiating the skew-
symmetric matrix populated with the small angle perturba-
tions.

[δ Ψ̇ib∧]≈ δĊi
b (9)

Where the time derivative attitude error is

[δ Ψ̇ib∧]≈ C̃i
bΩ̃

b
ibCb

i +C̃i
bCb

i Ω
i
ib, (10)

which reduces to
δ

˙̂
Ψib ≈ Ĉi

bbgyro
b . (11)

2) Velocity Error Propagation: In the Inertial frame, a
body’s acceleration is the summation of the specific force,
measured by the accelerometer, and the gravitation accelera-
tion, which must be modeled, as shown in Eq. 12.

ai = v̇i = f i + γ
i (12)

Thus, taking the time derivative of Eq. 12 yields

δ v̇i = f̃ i− f i + γ̃
i− γ

i = δ f i−δγ
i, (13)

which shows that the error associated with the derivative of
the velocity in the Inertial frame are comprised of two parts:
the error associated with the specific force (i.e., components 1
and 3 in the summation below), and the error associated with
modeling the gravitation acceleration (i.e., component two in
the summation below), as shown in Eq. 14.

δ ˙̂vi
=−(Ĉi

b f̂ i)δΨib +
2g
re

es

r̂i

|r̂i2|
r̂iT δ ri +Ĉi

bbaccel
b (14)

In particular, due to the transformation of the IMU specific
force measurements from the body-frame to ECI, the errors
associated with the specific force in ECI is a combination of
the accelerometer measurement errors (i.e., baccel

b ), in the body
frame, and attitude errors (i.e., δΨib ). Furthermore, in order
to model the Earth gravity, the position in ECI must be known
(i.e., δ ri ).

3) Position Error Propagation: Finally, because the mecha-
nization frame is ECI, the time-derivative of the position error
is the velocity error.

δ ṙi = δvi (15)

4) Sensor Bias Dynamics: For IMU accelerometer and rate
gyroscope biases, the dynamics are modeled as first-order
Guass-Markov processes.

5) System Dynamics and Transition Matrices: Using the
above defined error-state dynamics, the system matrix is
defined in Eq. 16.

F i
INS =


03 03 03 03 Ĉi

b

−(Ĉi
b f̂ i) 03

2g
re
es

r̂i

|r̂i2|
r̂iT Ĉi

b 03

03 I3 03 03 03
03 03 03 03 03
03 03 03 03 03

 (16)

The system matrix, F, is used to calculate the discrete System
Transformation Matrix (STM), Φ. The STM is calculated by
taking the power series expansion, and for this study, a third-
order expansion was used.

D. Practical Implementation Details

Beyond the INS mechanization, several practical implemen-
tation details are required for a proper design. This section
overviews a few of these considered in the presented imple-
mentation.

1) IMU to GNSS Lever Arm: The above INS mechanization
integrates the position and velocity at the location of the IMU.
Therefore, the INS solution needs to be transposed to the same
location as the GNSS solution (i.e. the phase center of the
GNSS antenna) using Eq. 17,

ri,G = ri,I +Ĉi
bLb (17)

where Ĉi
b is the estimated platform attitude, the known lever-

arm form the IMU to the GNSS antenna, Lb, represented in the
platform’s North, East, Down (NED) body-axis, and the super-
scripts G and I represent the GNSS antenna phase-center and
IMU location, respectively. Similarly, the INS velocity solution
must be transposed, as shown shown in Eq. 18: where Ωb

ib is
the skew-symmetric matrix of the IMU measured angular rate.

vi,G
k|k−1 = vi,I +Ĉi

bΩ
b
ibLb (18)

This is done upon each GNSS measurement update, and
reversed after the INS closed-loop feedback correction has
been applied.

2) GNSS and IMU Time-Alignment: Another implemen-
tation issue is the precise time-tag alignment of the INS
to the GNSS time-tag. This issue arises because the IMU
measurements, although typically stamped with a GPS time-
tag, are typically not scheduled to be precisely aligned with
the GNSS measurement epochs. This means that IMU data
must be used to predict the navigation states beyond the GNSS
observation epoch and then linearly interpolated back to the
time of the measurements. Furthermore, when a GNSS update
occurs, an incremental error-state transformation matrix, which
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provides the propagation mapping of INS error-states, must
be used to map to the error-states to the GNSS measurement
epoch. Then, after the GNSS update, the inverse of this
transformation was used to map the predicted INS error-states
back to the IMU time stamp in order to ensure that INS error-
states remains consistent with the INS time-tags.

IV. ALGORITHM PERFORMANCE EVALUATION

A. Flight Data

Two flights tests of the National Oceanic and Atmospheric
(NOAA) National Geodetic Survey (NGS) Gravity for the Re-
definition of the American Vertical Datum (GRAV-D) project
[47] that were flown over Alaska are used to conduct this
study. In total, 6.3 hours of flight data are processed (i.e., 2.8
hours and 3.5 hours). The flight data sets consist of dual-
frequency GPS pseudorange and carrier-phase observables
recorded at 1Hz and an IMU’s tri-axial accelerometer and rate
gyroscope measurements recorded at a rate of 200 Hz. The
commercial GNSS/INS system flown was a NovAtel SPAN
system that is comprised of an OEM4-2G GPS receiver and a
µ-IRS navigation-grade IMU. The surveyed lever-arm between
the GPS antenna’s phase-center and the IMU was provided by
NOAA NGS, as well as the rotation angles relating the IMU’s
mounted orientation to the aircraft body-axis.

Fig. 3 shows the latitude/longitude flight profiles for the two
flights processed in this study. The maximum range from the

 147.5° W  145.0° W  142.5° W  140.0
°
 W  137.5

° W  135.0
°
 W

 57.5° N  

 60.0° N  

 62.5° N  

 65.0° N  

05/29/15 Flight
06/09/15 Flight

Fig. 3. Flight trajectories of the two GRAV-D GPS/INS data sets that were
processed for this study

take-off location for the two flights was 727 km and 698 km
respectively for the two flights, making the possibility of using
RTK to single GNSS reference station impractical.

B. Reference Solution Strategy

The reference PPP position solutions were post-processed
with JPL’s GIPSY-OASIS II with JPL’s Final orbit and clock
products. In addition carrier-phase integer ambiguities were
fixed by employing JPL’s Wide-Lane Phase Bias products
with their single receiver integer ambiguity resolution al-
gorithm [37]. Finally, the position solutions were iterated

by making multiple passes over the data in which GNSS
data-outliers were deleted from the final solution using an
iterative windowing approach similar to the approach adopted
by Gross (2016) [15]. With the iterative approach, once the
position solution between successive data passes agreed to
the centimeter-level, the solution was accepted as final. The
reference attitude solutions used in the error analysis are the
filtered and smoothed solutions reported NovAtel SPAN post-
processing software.

For this study, all the error comparisons are drawn with
respect to forward-filter solutions, as would be employed for
real-time applications. That is, the need for rapid convergence
only applies to real-time applications, as PPP solution con-
vergence is not a problem for post-processing estimators that
employ a backward pass through the data with a Kalman
smoother. Additionally, throughout this error analysis, the
estimation performance evaluation of the PPP filters is only
conducted whenever the airplane was at its science cruise
altitude. The primary reason for starting the error comparisons
at altitude is due to the fact that post-processed PPP reference
solutions are known to have the largest solution uncertainty
during the flight’s ascent and decent periods, whenever the
tropospheric delay is rapidly changing and cannot easily be
distinguished from the vertical positioning error. Therefore, by
eliminating these periods from the error-analysis, and instead
using the solutions only at altitude, where the troposphere
delays can be tightly constrained to an input model, the
periods in which the reference solutions are expected to
exhibit their largest uncertainty cannot skew the error analysis.
Furthermore, as most airborne geodetic applications are only
concerned with the positioning accuracy during the portion
of the flight when the scientific instrumentation is active at
altitude, if the solution is lost during this period due to a large
bank, etc., the rapid convergence obtained with INS would
help maintain accuracy.

C. Real–Time Processing Strategy

The dual-frequency ionosphere-free pseudorange and
carrier-phase data combinations were used for all filters. The
measurement noise assumed on every pseudorange and carrier-
phase dual-frequency observable was 2.5 meters and 2.5 mm,
respectively. The filter utilized by RTGx is formulated as a
generalized Square-Root Information Filter (SRIF) [48]. This
formulation allows any modeled parameter to be estimated
as a first-order Gauss-Markov stochastic process (i.e. ranging
from white-noise to random-walk). Table I lists the stochastic
models used for each of the PPP and INS model parameters
for the filters evaluated in this study.

For filter efficiency, we elected to perform system process
noise updates at 1 Hz (i.e., the same rate as the GNSS data).
However, because 1 second update intervals are much longer
than the 100 Hz INS integration intervals, the INS process
noise becomes correlated amongst the navigation states (i.e.,
off diagonal terms exist). Fortunately, this correlation can
be analytically propagated [39]. However, in this study, for
simplicity, standard uncorrelated process noise updates were
used, and to arrive at the values listed in Table I, the IMU



7

TABLE I
SELECTED STOCHASTIC MODELS PARAMETERS FOR PPP AND PPP/INS FILTERS

Parameter Only with INS a priori σ Process Noise Correlation Time
Position No 0.5 m 5 m√

s ∞

Trop. Wet Zenith Delay No 0.05 m 5e-7 m√
s ∞

Receiver Clock No 1000 m 1000 m√
s 0

Phase Biases No 3e8 m 0 m√
s ∞

Velocity Yes 2.0 m/s 0.28e-3 m√
s ∞

Attitude Yes 5.0 deg. 4e-5 deg.√
s ∞

Accelerometer Biases Yes 0.05 m
s2 0.263e-4

m
s2√

s ∞

Gyroscope Biases Yes 2.8 deg./s 4e-5 deg./s√
s ∞

stochastic model parameters were initially assigned based on
the expected range for a navigation grade IMU provided by
[39] and empirical tuning was used increase them to account
for the 1 Hz update interval and optimize the positioning
performance.

V. RESULTS AND DISCUSSION

A. Positioning Performance

1) Sensitivity to Orbit/Clock Products: For this sensitivity
study, although all of the filters were run in forward filter
only as a real-time estimator, in order to assess the sensitivity
to orbit/clock product quality, the use of final post-processed
GPS orbit/clock products were used (i.e., knowing that final
orbits/clocks that are post-processed could never be used in
real-time) in addition to real-time orbits/clocks and the GPS
broadcast ephemeris. This was conducted in order to assess the
impact of the quality of the orbit/clock products with respect
to the benefits of tightly-coupled PPP/INS.

The positioning performance when using broadcast or-
bit/clock products both with INS and without is depicted in
Fig. 4, in which the cumulative distribution function (CDF)
of the residual sum of squares (RSOS) for both forward-filter-
only shows the overall positioning error reduction due to the
incorporation of INS. This is also shown in Table II, where
the INS solution is shown to yield approximately a 30 cm
reduction with respect to position mean, standard deviation,
and RMS errors.

The sensitivity of the positioning performance when using
real-time and final orbit/clock products is shown in Fig. 5,
where it should be noted that there is approximately a 1
meter error reduction with respect to positioning performance
obtained using broadcast products. One of the most notable
insights drawn from Table II is that the PPP/INS using real-
time products outperforms the PPP filter even when using
final orbits/clock products with respect to RMS and standard
deviation errors. This is significant because it suggests that
INS reduces the latency needed to produce the highest quality
positioning performance. Furthermore, it is also apparent that
the GPS-only PPP solutions with real-time and final products
are largely equivalent (i.e., within a cm for most metrics ), but
that there is an additional 2-3 cm error reduction with respect
to metrics reported in Table II when comparing the PPP/INS
solutions that use real-time products and final products. This
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Fig. 4. Cumulative distribution of 3DRSOS positioning error of the forward-
filter GPS solutions with and without including INS. Both solutions are
processed using the PPP models in RTGx, but with the Broadcast GPS orbit
and clock solutions.

suggests that is is beneficial to use INS even when final orbits
are available.

TABLE II
POSITIONING ERROR STATISTICS FOR TWO ALASKAN FLIGHTS.

3DRSOS (cm) Median µ σ RMS Max.
GPSBrdc 128.6 141.8 71.9 159.0 651.1

GPS/INSBrdc 115.6 114.7 42.05 122.2 369.8
PPPRT 11.3 19.1 27.9 33.8 312.8

PPP/INSRT 11.2 15.3 17.6 23.3 227.0
PPPFinal 10.9 19.4 28.9 34.7 297.5

PPP/INSFinal 9.2 13.8 13.8 19.5 235.4

2) Convergence Improvements with INS: The clearest ben-
efit of tight-INS integration within PPP is the reduction of the
solution convergence time. This is depicted with respect to
estimated states in Figs. 6, 7 and 8. Fig. 6 shows a substantial
benefit of INS integration with respect to positioning during
the first half-hour of the real-time PPP solution.

In Fig. 6 the tight-INS PPP filter converges to less than 10
cm errors within a few minutes, where as the GPS-only PPP
filters takes nearly one-half hour. The convergence benefit is
also shown in Fig. 7, which shows convergence of the carrier-
phase bias estimates during the first 15-minutes of the forward-
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Fig. 6. Example of convergence benefit of INS integration during the half hour
of the real-time PPP solution when compared to the post-processed ambiguity-
fixed PPP reference solution.

filter solution.
In Fig. 7, phase-bias errors for each of the satellites tracked

at the start of the data set are estimated with respect to their
final steady-state estimates. For each satellite, the tight-INS
solution consistently enhances that filter’s ability to quickly
converge upon the carrier-phase bias. Fig. 8 shows an exam-
ple of troposphere zenith delay estimation error convergence
during the first 15-minutes of the filter that used real-time
products with and without tight-INS integration. The errors
are calculated with respect to the Vienna Mapping Function
(VMF) [49] Grid delay estimation, which shows that the
integrated solution converges to the correct troposphere delay
in a more stable manner when compared to the solution
without INS.

Finally, when comparing positioning performance after a
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Fig. 7. Example of GPS carrier-phase biases converging during the first 15-
minutes of the Real-Time filter with and without INS integration. Phase bias
errors are estimated with respect to their final estimated steady-state values
at 3.5 hours into the flight.
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integration. Errors are estimated with respect to Vienna Mapping Function
(VMF) Grid delay estimation generated by accepting the position solution of
the post-processes ambiguity-fixed PPP reference.

30-minute convergence, as shown in Table III, it becomes
apparent that the positioning estimation performance is nearly
identical between the filters with and without INS. This further
substantiates that INS primary benefit is to reduce the PPP
solutions initial convergence.

TABLE III
POSITIONING ERROR STATISTICS WITH REAL-TIME ORBIT AND CLOCK

PRODUCTS FOR TWO ALASKAN FLIGHTS AFTER A 30-MINUTE FILTER
CONVERGENCE PERIOD.

3DRSOS (cm) Median µ σ RMS Max.
PPPRT 9.7 11.3 7.6 13.2 43.2

PPP/INSRT 9.2 11.3 6.8 13.6 43.6

3) Sensitivity to Troposphere Nominal and Mapping Func-
tion: To evaluate the positioning performance with respect
to the method utilized to model the troposphere, four different
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troposphere modeling approaches were adopted, including: (1)
a low-fidelity approach in which no wet or dry nominal delay
was provided to the filter, (2) a standard approach in which a
scale height was used to model the dry delay and the wet delay
is estimates, and (3) and (4) post-processing approaches in
which both wet and dry delays are provided based on reference
products. In each case, the positioning error sensitivity to the
troposphere nominal and model are summarized in Table IV.
From Table IV, a 10 cm reduction in both standard deviation

TABLE IV
POSITIONING ERROR SENSITIVITY TO TROPOSPHERE NOMINAL MODEL
AND MAPPING FUNCTIONS. ALL FILTERS USE REAL-TIME ORBITS AND

CLOCKS.

3DRSOS (cm) Median µ σ RMS Max.
PPPNo Nom., Neill 38.4 43.8 31.6 54.0 394.7

PPP/INSNo Nom, Neill 35.1 36.4 21.2 42.1 262.4
PPPStatic Nom., Neill 11.3 19.1 27.9 33.8 312.8

PPP/INSStatic Nom., Neill 11.2 15.3 17.6 23.3 227.0
PPPGPT2 Nom., GMF 10.8 19.5 28.2 34.3 306.4

PPP/INSGPT2 Nom., GMF 11.2 16.0 18.0 24.0 254.4
PPPVMF1 Nom., VMF1 11.2 18.6 28.1 33.7 306.1

PPP/INSVMF1 Nom., VMF1 11.2 14.6 17.6 22.9 266.5

and RMS positioning error due to INS integration regardless of
the troposphere nominal and modeling approach. This suggests
that the INS enables better separation of position estimates
from the troposphere delay.

B. Attitude Estimation

An important benefit of INS is the availability of an atti-
tude solution, which is not present with only GPS. Table V
shows good agreement of the RTGx/INS attitude solution with
respect to the attitude provided by the NovAtel SPAN system.
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Fig. 9. Cumulative distribution of attitude error of the real-time forward-filter
PPP solutions with INS. Errors are calculated with respect to the on-board
real-time NovAtel SPAN estimates as a reference solution

From both Table V and Fig. 9, the heading error is no-
ticeably larger than the roll and pitch errors. This is expected
due to the nature of the flight. Each data set contains almost
entirely long periods straight and level flight. During these

flight conditions, it is well-known that IMU yaw biases have
issues with respect to observability [50].

TABLE V
ATTITUDE ERROR STATISTICS FOR TWO GRAV-D ALASKA FLIGHTS.

ERRORS ARE CALCULATED WITH RESPECT TO THE ON-BOARD REAL-TIME
NOVATEL SPAN ESTIMATES AS A REFERENCE.

|Error| (deg.) Median µ σ Max.
φ 0.35 0.33 0.24 1.10
θ 0.09 0.11 0.10 0.95
ψ 2.17 3.10 2.70 15.61

VI. CONCLUSIONS

For airborne geodetic applications that need accurate posi-
tioning, require long-baseline flights, and are flying in loca-
tions that are distant from a dense GNSS ground reference sta-
tion network, the PPP processing technique is favorable over
RTK or NRTK. However, for use in real-time applications,
it is well know that PPP, when compared to RTK, is slower
to converge to accurate positioning. This slow convergence
property may become an issue in real-time if the solutions is
intermittently lost mid-flight due to the loss of carrier-phase
lock, which may occur, for example, during a large aircraft
bank. As such,the performance and sensitivity of tightly-
coupled PPP/INS has been presented using two long-baseline
flight data sets in order to demonstrate the benefits of tight-
INS with respect to improving the convergence properties
of real-time PPP. In particular, the integrated INS solutions
have been shown to speed up convergence, leading to a
reduction in positioning error that exceeds 30%. Furthermore,
the improved solution convergence offered by tight-INS has
also been demonstrated by comparing the real-time estimated
zenith tropospheric delay to a post-processed reference, and
by comparing the real-time estimated carrier-phase biases to
their estimated steady-state values.

To offer additional insight, this paper has also presented
the sensitivity of the benefit of using tightly-coupled PPP/INS
while other typical PPP error sources are reduced through
other means. For example, the sensitivity of PPP/INS when
using various latency GPS orbit and clock products (i.e.,
GPS broadcast orbits/clocks, real-time GDGPS orbits/clocks,
and JPL final post-processed GPS orbits/clocks) has been
presented. From this sensitivity study, it has been shown that
a tight-PPP/INS filters that use real-time GNSS orbit/clock
products, which are known to have cm-to-dm-level errors with
respect to final orbit/clock products, is able to outperform the
positioning solutions that are based upon GPS-only PPP that
use final post-processed orbit/clock products. Additionally, a
similar sensitivity study has been presented with respect to
the fidelity of the PPP filter’s tropospheric delay modeling
approach. In this case, it has been demonstrated that the
benefit of tightly-coupled INS remains consistent, irrespective
of the fidelity of tropospheric delay estimation approach that
is adopted.

In summary, for airborne applications that require accurate
real-time solutions and robustness to signal outages, cycle-
slips, etc., tightly-coupled INS is an important way to compen-
sate for the slow convergence properties of real-time PPP, and
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this benefit remains important even as other PPP error sources,
namely, orbit/clock errors and tropospheric delay errors, are
reduced.
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[19] G. Wübbena, M. Schmitz, and A. Bagge, “Ppp-rtk: precise point posi-
tioning using state-space representation in rtk networks,” in Proceedings
of ION GNSS, vol. 5, 2005, pp. 13–16.

[20] P. Teunissen and A. Khodabandeh, “Review and principles of ppp-rtk
methods,” Journal of Geodesy, 2014.

[21] O. Colombo and A. Evans, “Evaluation of precise, kinematic gps point
positioning.” ION GNSS, 2004, pp. 217–222.

[22] M. Honda, M. Murata, and Y. Mizukura, “Development and assessment
of gps precise point positioning software for land vehicular navigation,”
vol. 6, 2007.

[23] S. Bisnath and Y. Gao, “Current state of precise point positioning and
future prospects and limitations,” in Observing our changing earth.
Springer, 2009, pp. 615–623.

[24] C. Rizos, V. Janssen, C. Roberts, and T. Grinter, “Precise point posi-
tioning: Is the era of differential gnss positioning drawing to an end?”
2012.

[25] C. Cai, Y. Gao, L. Pan, and J. Zhu, “Precise point positioning with quad-
constellations: Gps, beidou, glonass and galileo,” Advances in Space
Research, vol. 56, no. 1, pp. 133–143, 2015.

[26] X. Ren, S. Choy, K. Harima, and X. Zhang, “Multi-constellation gnss
precise point positioning using gps, glonass and beidou in australia,” in
International Global Navigation Satellite Systems (IGNSS) Symposium.
International Global Navigation Satellite Systems Society, 2015, pp. 1–
13.

[27] S. Du, “Integration of precise point positioning and low cost mems imu,”
Master’s thesis, University of Calgary, November 2010.

[28] N. S. Kjorsvik, J. G. O. Gjevestad, E. Broste, K. Gade, and O.-K. Hagen,
“Tightly coupled precise point positioning and inertial navigation sys-
tems,” in International Society for Photgrammetry and Remote Sensing
European Calibration and Orientation Workshop. IPRS, 2010.

[29] M. A. Rabbou and A. El-Rabbany, “Tightly coupled integration of
gps precise point positioning and mems-based inertial systems,” GPS
Solutions, vol. 19, no. 4, pp. 601–609, 2015.

[30] R. Watson, V. Sivaneri, and J. Gross, “Performance Characterization
of Tightly-Coupled GNSS Precise Point Positioning Inertial Navigation
within a Simulation Environment,” in Submitted to the 2016 AIAA
Guidance Navigation and Control Conference. AIAA, 2016.

[31] J. Gross, R. Watson, V. Sivaneri, Y. Bar-Sever, W. Bertiger, and
B. Haines, “Integration of inertial navigation into real-time gipsy-x
(rtgx),” in Proceedings of the 28th International Technical Meeting of
The Satellite Division of the Institute of Navigation (ION GNSS+ 2015),
Tampa, FL, 2015.

[32] T. Yunck, W. Bertiger, S. Wu, Y. Bar-Server, E. Christensen, B. Haines,
S. Lichten, R. Muellerschoen, Y. Vigue, and P. Willis, “First assessment
of gps-based reduced dynamic orbit determination on topex/poseidon,”
Geophysical research letters, vol. 21, no. 7, pp. 541–544, 1994.

[33] B. Haines, Y. Bar-Sever, W. Bertiger, S. Desai, and P. Willis, “One-
centimeter orbit determination for jason-1: new gps-based strategies,”
Marine Geodesy, vol. 27, no. 1-2, pp. 299–318, 2004.

[34] R. Kroes, O. Montenbruck, W. Bertiger, and P. Visser, “Precise grace
baseline determination using gps,” GPS Solutions, vol. 9, no. 1, pp. 21–
31, 2005.

[35] S. Desai, W. Bertiger, J. Gross, B. Haines, N. Harvey, C. Selle,
A. Sibthorpe, and J. Weiss, “Results from the reanalysis of global gps
data in the igs08 reference frame,” 2011.

[36] Y. E. Bar-Sever, W. I. Bertiger, A. R. Dorsey, N. E. Harvey, W. Lu,
K. J. Miller, M. A. Miller, L. J. Romans, A. J. Sibthorpe, J. P. Weiss,
M. Garcia-Fernandez, and J. Gross, “Real-time and post-processed orbit
determination and positioning, U.S. Patent No. 9,057,780 B2,” Jun. 18
2015.

[37] W. Bertiger, S. D. Desai, B. Haines, N. Harvey, A. W. Moore, S. Owen,
and J. P. Weiss, “Single receiver phase ambiguity resolution with gps
data,” Journal of Geodesy, vol. 84, no. 5, pp. 327–337, 2010.

[38] W. Bertiger, Y. Bar-Sever, E. Bokor, M. Butala, A. Dorsey, J. Gross,
N. Harvey, W. Lu, K. Miller, M. Miller et al., “First orbit determination
performance assessment for the OCX navigation software in an opera-
tional environment,” in Proceedings of the 25th International Technical
Meeting of The Satellite Division of the Institute of Navigation (ION
GNSS+ 2012), 2012.

[39] P. D. Groves, Principles of GNSS, inertial, and multisensor integrated
navigation systems. Artech House, 2013.

[40] S. Du and Y. Gao, “Inertial aided cycle slip detection and identification
for integrated ppp gps and ins,” Sensors, vol. 12, no. 11, pp. 14 344–
14 362, 2012.

[41] A. Soloviev, F. Graas, and G. Sanjeev, “Implementation of deeply
integrated gps/low-cost imu for reacquisition and tracking of low cnr gps
signals,” in National Technical Meeting of The Institute of Navigation,
2004.

[42] G. Goa and G. Lachapelle, “A novel architecture for ultra-tight hsgps-ins
integration,” Journal of Global Positioning Systems, vol. 7, 2008.



11

[43] C. Jekeli, Inertial navigation systems with geodetic applications. Walter
de Gruyter, 2001.

[44] B. L. Stevens and F. L. Lewis, Aircraft control and simulation. John
Wiley & Sons, 2003.

[45] N. K. Pavlis, S. A. Holmes, S. C. Kenyon, and J. K. Factor, “An earth
gravitational model to degree 2160: Egm2008,” EGU General Assembly,
pp. 13–18, 2008.

[46] G. Petit and B. Luzum, Eds., IERS Conventions (2010), (IERS Technical
Note ; 36).

[47] T. M. Damiani, A. Bilich, and G. L. Mader, “Evaluating Aircraft
Positioning Methods for Airborne Gravimetry: First Results from GRAV-
D’s Kinematic GPS Processing Challenge,” in Proceedings of the 26th
International Technical Meeting of The Satellite Division of the Institute
of Navigation (ION GNSS+ 2013), 2013.

[48] G. J. Bierman, Factorization methods for discrete sequential estimation.
Courier Corporation, 2006.

[49] J. Boehm, B. Werl, and H. Schuh, “Troposphere mapping function for
gps and very long baseline interferometry from european centre for
medium-range weather forecasts operational analysis data,” Journal of
Geophysical Research, 2006.

[50] D. Becker, M. Becker, S. Leinen, and Y. Zhao, “Estimability in strap-
down airborne vector gravimetry,” 2015.


