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To overcome the rapid and unbounded error growth of low-cost Inertial Navigation
Systems (INS), aircraft localization methods commonly compensate for Inertial Measure-
ment Unit (IMU) sensor errors by integrating them with Global Positioning System (GPS)
measurements via a Kalman Filter. However, over the past decade, the potential of GPS
jamming or even spoofing GPS signals has focused the research community on the develop-
ment of GPS-denied navigation technologies. Of the GPS-denied techniques, one approach
that has been considered is the use of a Vehicle Dynamic Models (VDM) to reduce the
rate at which an INS becomes unusable. As such, this paper considers the use of an aero-
dynamic model to aid in compensation of IMU errors of a fixed-wing Unmanned Aerial
Vehicle (UAV). The goals of this paper are to evaluate the sensitivity of the performance
of dynamic model aided navigation in the context of low-cost platforms where performance
benefit must be weighed against the complexity that is required to develop the dynamic
model. To do this, first, the sensitivity to the required modeling accuracy is shown by
perturbing the the model coefficients with errors. In addition, different sensors and sensor
grades are evaluated, and three different model-aided navigation architectures are discussed
and evaluated. To conduct this work, a UAV simulation is developed within which a UAV
trajectory is driven by ’truth’ dynamic model and then IMU measurements are derived
and errors are added to them using standard stochastic models for IMU sensors. In prepa-
ration for UAV flight tests, this performance sensitivity study is conducted to characterize
the expected performance.

I. Introduction

Multiple authors have considered model-aided navigation. For example, Koifman, M. and Bar-Itzhack
introduced an approach in which the model of aircraft dynamics, mathematically modeled is coupled with
conventional INS system within an Extended Kalman Filter (EFK) to obtain a navigation system with
performances considerably better than simply allowing the INS to drift.1 In this study, it is demonstrated
that the dynamics aided INS is more accurate than the unaided INS and, at the same time, that this aided
navigation technique allows better calibration of its own error sources if combined with a GPS system. Fur-
ther, Crocoll et al.2 introduced an Unified Model (UM) that implicitly constrains the two independent state
prediction models (i.e. VDM and INS) to reduce computation burden and state vector when implementing
model-aided navigation. Crocoll et. al3 then used the same UM technique for an experimental quadcopter
application in which they demonstrated that even though no rotational vehicle dynamics are modeled (they
use only translational dynamics modeling), roll angles, pitch angles and even IMU biases with bounded er-
rors are estimable with model-aided navigation. For fixed-wing aircraft, Bryson and Sukkarieh,4 considered
using a Vehicle Dynamic Models (VDM) to predict the aircraft state vector which are then fused with the
IMU measurements via an EKF to estimate the errors in the inertial sensors and in the VDM computations.
In this work, they showed that the simulation results related to the different INS configurations considered
improves the navigation system performance even when small parameter errors are present in the model.
Further, it is shown that IMU bias estimation depends mainly on sudden acceleration errors in the VDM
and also on growing errors in the VDM velocity and Euler angles. More recently, Khagani and Skaloud5
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used a conventional INS/GNSS setup to be used for small UAVs with low-cost IMUs. In their work, they
provide a VDM that estimates of position, velocity, and attitude, which is updated within a filter based on
available; they also consider GNSS outages and discuss about observability.

Because of these promising results, this paper motivation is provide additional insight as to the sensitivity
of the required quality of the UAV dynamic model, IMU sensor grade, and effects of additional sensors. The
rest of this paper is organized as follows. Section II discusses at high-level the UAV dynamic model approach
considered, the UAV that this study is based upon, and the simulation environment developed for this study.
Next, Section III details the aircraft equations of motions and force and moment equations as well as the
specific INS mechanization adopted in the study. Section IV shows all the results obtained considering all the
case studies investigated. Finally, the conclusions and some future developments suggestions are discussed
in Section V.

II. Technical Approach

In order to achieve the overall objective, a numerical method was used to create the aerodynamic model
of the aircraft. This model provides the coefficients and parameters that have to be used in the VDM. The
model is derived based on the Vortex Lattice Method (VLM), which represents the lifting surfaces and their
trailing wakes as single -layer vortex sheets, discretized into horseshoe vortex filaments, whose trailing legs
are assumed to be parallel to the UAV body x-axis. VLM results are known to be high fidelity, offering
detailed information, such as surface loading.6

II.A. Dynamic Modeling

The small UAV modeled in this work is the West Virginia University Phastball Zero (PZero) UAV, which
has a wing span of 2.4 m and a weight of 12.5 kg. The first step for the development of each model was
to define the operating points and the reference Reynolds numbers as shown in Figure 4(a) knowing the
PZero UAV speed and airfoil geometry. Subsequently, each lifting surface were paneled, as shown in Figure
4(b), in order to use the VLM to estimate the pressure distribution as shown in Figure 4(c) and the stability
derivatives to be used to solve the equations of motion for the VDM. The fuselage and the engines have
been also considered in the VLM modeling in order to use a model as accurate as possible unlike of the
other additional ancillary components, which are modeled in our CAD rendering (e.g., landing gears and
antennas).

(a) Reynolds number behavior for wing
profile

(b) VLM paneling (c) Pressure distribution

Figure 1: Aerodynamic analysis through VLM

The mass and moments of inertia were estimated using 3D CAD software (CATIA V5). Except for wires
and cabling, all the parts have been drawn in order to obtain a detailed mass distribution.

II.B. Flight Simulation and Sensor Error Models

For trajectory generation, a six degree-of-freedom (6DoF), Simulink7 model has been created. The approach
allows the user to run the Simulink model of the aircraft, and simultaneously animate it in the free, open
source multi-platform flight simulator FlightGear,8 as shown in Figure 2(b). Pilot commands are managed
through a joystick or through an input script file. In this study, five constant-height flights, each 5 minutes
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(a) CAD model (b) Flight simulator interface (FlightGear)

Figure 2: Geometrical model

in length characterized by little variations of the deflection angles relative to the elevator and aileron were
simulated.

Using the output of the simulated flight trajectory, IMU sensors are then derived using a Inertial Naviga-
tion System Matlab toolbox9 which has been modified to model various grade IMUs.10 The reference IMU
device is a tactical grade Honeywell HG1930BA50 which characteristics are shown in the Table 1, and one
IMU much worse than these (i.e., automotive grade) and one IMU much better than this (i.e., intermediate
grade) were also considered.

Table 1: Honeywell HG1930BA50 Performance11

Gyro Bias Repeatability 40 ◦/h 1σ

Gyro Bias In-run Stability 1.5 kg

Angular Random Walk (ARW) 0.095, 0.095 ◦/
√

h max

Accel Bias Repeatability 10 mg 1σ

Accel Bias In-run Stability 0.5 kg 1σ

Velocity Random Walk (VRW) 0.3 fps/
√

h max

III. Model-Aided Navigation Architecture

The architecture of the algorithm used in this work consists of two subsystems: the first is related to the
INS that estimates position, velocity and attitude of the aircraft using the IMU data while the second the
VDM which also estimates velocity and attitude through the equation of motion and estimated forces and
movements based on the coefficients from VLM.

III.A. Vehicle Dynamic Model

For the VDM section, in order to estimate velocity and attitude, the following equations of motion that
assumed flat Earth were used:12

u̇ = rv − qw + gx+ (Fx/m) (1)

v̇ = pw − ru+ gy + (Fy/m) (2)

ẇ = qu− pv + gz + (Fz/m) (3)

ṗ =
{Izz l + Ixz N − [Ixz (Iyy − Ixx − Izz)] pq + [I2xz + Izz (Izz − Iyy)]rq}

(Ixx Izz − I2xz)
(4)

q̇ =
1

Iyy
[M − (Ixx − Izz) pr − Ixz (p2 − r2)] (5)
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ṙ =
{Ixz l + Ixx N − [Ixz (Iyy − Ixx − Izz)] rq + [I2xz + Ixx (Ixx − Iyy)]rq}

(Ixx Izz − I2xz)
(6)

φ̇ = p+ (q sinφ+ r cosφ) tan θ (7)

θ̇ = q cosφ− r sinφ (8)

ψ̇ = (q sinφ+ r cosφ) sec θ (9)

where the gravitational acceleration gn is defined as

gn =

 gx

gy

gz

 =

 −g sin θ

g sinφ cos θ

g sinφ cos θ

 . (10)

The force and moments are expressed by,

Fx = CX q̄S + Tx (11)

Fy = CY q̄S + Ty (12)

Fz = CZ q̄S + Tz (13)

l = Clq̄Sb+MTx
(14)

M = CM q̄Sc+MTy
(15)

N = CN q̄Sb+MTz
(16)

where q̄ = (1/2)ρV 2 is the dynamic pressure, ρ is the atmospheric density, S is the wing surface and T , MT

are the thrusting effects.
The force and moment coefficients have been calculated in the form

C( ) = C( ) (c̄, e0, b,A, α, β, V, u, δ, α̇, p, q, r) . (17)

In the previous equations, c̄ is the wing chord, α is the angle of attack, β is the sideslip angle, e0 is the
Oswald efficiency number,A is the aspect ratio, b is the wing span, V is the total velocity, u is the forward
speed, δ is referred to the aileron, elevator and rudder deflections, α̇ is the aerodynamic-angle rate, and p,q
and r are the components of the aircraft body-axis angular-velocity vector.

III.B. Inertial Navigation System

For the INS, the mechanization derived in Groves (2013)13 for positioning in a Earth frame with NED velocity
and attitude. In order to calculate position (pn), velocity (vn) and Euler angles (Φ) in the North-East-Down
(NED) frame n, the following equations are used,

ṗ = vn (18)

v̇ = Cn
b fb + gn − (Ωn

en + 2Ωn
ie)vn (19)

Φ̇ = En
b wb (20)

where Cn
b is the body to navigation frame transformation matrix, fb is the body-axis specific force vector,

En
b is the rotation rate transformation matrix, and wb is the body-axis angular rate vector.

The third term of Equation (19) takes into account of the Earth’s rotation considering the following
terms.

Ωn
en =


0 −ωn

en,z ωn
en,y

ωn
en,z 0 −ωn

en,x

−ωn
en,y ωn

en,x 0

 (21)
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ωn
en =


vneb,E/(RE(Lb) + hb)

−vneb,N/(RN (Lb) + hb)

(−vneb,E tanLb)/(RE(Lb) + hb)

 (22)

Ωn
ie = ωie


0 sinLb 0

− sinLb 0 − cosLb

0 cosLb 0

 (23)

Furthermore, knowing that ωie = 7.292 115 0 rad/s−1 is the WGS 84 Earth’s angular rate and,

RN (Lb) =
R0(1− e2)

(1− e2 sin2 Lb)3/2
(24)

RE(Lb) =
R0√

(1− e2 sin2 Lb)
(25)

where RN is the radius of curvature for North-South motion, RE is the radius of curvature for East-West
motion, R0 = 6 378 137 m is the equatorial radius, e = 0.0818191918425 is the eccentricity, and Lb is the
geodetic latitude.

III.C. Filter Design

Figure 3 illustrate the configuration used in the proposed approach.

Figure 3: Model Aided Navigation configuration.

As shown in Figure 3, an Unscented Kalman filter (UKF)14 is used to fuse the outputs from INS and the
VDM. For details on how to implement the UKF algorithm, the reader is turned to,15 in this section, the
key elements of of the UKF used in this work including the state vector, x, nonlinear prediction model, f ,
measurement update model, h, and assumed process noise, Q and measurement noise, R, are outlined .

The state vector x consists of the following 12 states (position, velocity, body-to-NED Euler angles, and
estimated angular rates [p, q, r]):

x = [x y z VN VE VD φ θ ψ p q r ]

At each time step,k, the unscented transformation is used to generate a set go sigma-points using the previous
epoch, k − 1, estimated state and error-covariance. Then, state estimates are propagated in time using the
INS formulation described in Section III.B, denoted as f .

xk = f(xk−1, ek−1, pk−1) + wk−1 (26)
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It should be noted since the aircraft body-axis rates are included as an estimated states, that these estimated
p, q and r are used within the INS mechanism for attitude prediction as opposed to the IMU measured values.
Furthermore, these states are predicted as a random-walk process by adding process noise. Next, for the
measurement update, h, the same set of sigma points that are used for predicting with INS are within the
aircraft vehicle dynamic model (VDM) as described in Section III.A are differenced with the INS predictions
to form pseudo-measurements.

yk = h(xk, ek, pk) + vk (27)

In particular, the attitude and velocity predicted with INS within Eq. 26 and the attitude and velocity
predicted with VDM are differenced within Eq. 27, such that, with an ideal INS and ideal VDM a pseudo-
measurement can be used to take advantage of the information that these difference should be 0. These 6
pseudo-measurements are combined with the IMU measured angular rates p, q and r, such that there are 9
measurements in the baseline model added navigation configuration.

zk =
[
01x6 pIMU qIMU rIMU

]
(28)

Where the 6 zeros account for the pseudo-measurement constraints, and the angular rate states are directly
observed by the IMU,

In addition to these nine baseline measurements, the addition of a three airspeed sensor and one altimeter
were also considered as additional configurations. The airspeed and altimeter measurement update equations
included within h, when utilized are shown in Equation (29) to (32),

um = V cos (α) cos (β) (29)

vm = V sin (β) (30)

wm = V sin (α) cos (β) (31)

am = h+ η (32)

where V is the measured airspeed, h is the measured altitude and η is the altimeter measurement noise.
In (27), X̂k is the updated state at time step k, x̂k|k−1 is the predicted state at time step k from (26),

and ŷk|k−1 is the predicted output at time step k from (26).
The 12× 12 process noise covariance matrix Q and the 9× 9 to 13× 13 (depending on the architecture

chosen) measurement noise covariance matrix R values are expressed in Table 2.

Table 2: Process noise covariance matrix Q and measurement noise covariance matrix R values.

Process noise
covariance matrix Q

Position 5.6× 10−8 rad

Velocity 8× 10−4 m/s

Attitude 3.05× 10−8 rad

Angular Rates 3.05× 10−6 rad/s

Measurement noise
covariance matrix R

Velocity 1 m/s

Attitude 1 rad

Angular Rates 1 rad/s

Airspeed 2 m/s

Altimeter 1 m

These values were selected based on empirical tuning.

IV. Results

To assess performance sensitivity, the aircraft localization results are computed with the following con-
ditions varied:

• Model-aided navigation architecture(i.e., inclusion of airspeed and altimeter measurements);

• IMU sensor grade (i.e., ranging from automotive to tactical grade);

• UAV dynamic model quality with respect to truth (i.e., perturbing the modeled coefficients with errors).

All results are expressed in terms of velocity and altitude drift for the INS along and integrated navigation
approach.

6 of 10

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 W

E
ST

 V
IR

G
IN

IA
 U

N
IV

E
R

SI
T

Y
 o

n 
Ja

nu
ar

y 
10

, 2
01

7 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
7-

08
08

 



IV.A. Model-aided navigation architecture

First, the three different architectures were considered, depending on the measurement technique adopted
as mentioned above, namely:

• VDM-aiding only

• VDM with airspeed measurements

• VDM, with airspeed and altimeter measurements

As shown in Table 3, introducing the airspeed sensor we obtain better results in terms of position, velocity
and attitude. The introduction of the altimeter further improves the positioning performance.

Table 3: Model-Aided Navigation architectures results

Position (m) Velocity (m/s) Attitude (deg)

Flight #1

INS 2857.34 26.26 1.28

VDM only MAN 3812.93 10.73 0.78

VDM + Airsp MAN 2221.26 0.26 0.73

VDM + Airsp + Alt MAN 2201.64 0.26 0.74

Flight #2

INS 1964.83 26.26 1.28

VDM only MAN 3503.28 10.62 0.83

VDM + Airsp MAN 3503.28 10.62 0.83

VDM + Airsp + Alt MAN 1637.57 0.25 0.75

Flight #3

INS 5761.41 25.85 1.21

VDM only MAN 2786.2 12.12 0.89

VDM + Airsp MAN 2823.94 0.25 0.72

VDM + Airsp + Alt MAN 2704.73 0.25 0.72

Flight #4

INS 5534.09 25.82 1.22

VDM only MAN 4489.31 11.25 0.82

VDM + Airsp MAN 3728 0.26 0.72

VDM + Airsp + Alt MAN 3709.81 0.26 0.73

Flight #5

INS 5604.81 25.79 1.24

VDM only MAN 2919.03 11.8 0.84

VDM + Airsp MAN 2755.16 0.26 0.71

VDM + Airsp + Alt MAN 2650.9 0.26 0.71

As an example, Figure 4 shows an example of the results obtained for a single case. It is important to
note that in all the three architectures, in most respects, the MAN approach results to perform better than
the INS alone. That is, velocity and attitude are always better, and overall positioning is typically better.

Figure 4: Position,velocity and attitude drifts related to the VDM
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IV.B. IMU sensor grade

Next, in order to assess the sensitivity to IMU grade, different scaled versions of the reference IMU listed in
Table 1 on page 3, have been created in order to simulate various sensor grades. The results are contained
in the Table 4 on the next page.

Table 4: IMU sensor grades’ results

Position (m) Velocity (m/s) Attitude (deg)

Flight #1

IMU #1
INS 6110.55 56.59 1.66

MAN 2046.08 0.18 0.51

IMU #2
INS 2765.61 25.98 1.27

MAN 2222.51 0.26 0.74

IMU #3
INS 2857.34 26.26 1.28

MAN 2201.64 0.26 0.74

Flight #2

IMU #1
INS 4691.24 63.5 1.41

MAN 1704.47 0.18 0.8

IMU #2
INS 2017.02 25.42 1.27

MAN 1605.4 0.26 0.76

IMU #3
INS 1964.83 26.26 1.28

MAN 1637.57 0.25 0.75

Flight #3

IMU #1
INS 9159.58 134.04 4.12

MAN 68576.87 0.45 1.37

IMU #2
INS 5785.67 25.8 1.21

MAN 2706.4 0.25 0.71

IMU #3
INS 5761.41 25.85 1.21

MAN 2704.73 0.25 0.72

Flight #4

IMU #1
INS 7096.55 54.53 1.91

MAN 3729.55 0.27 0.75

IMU #2
INS 5536.89 25.66 1.22

MAN 3741.62 0.27 0.74

IMU #3
INS 5533.96 25.82 1.22

MAN 3709.81 0.26 0.73

Flight #5

IMU #1
INS 6253.95 28.03 2.48

MAN 52791.34 0.74 2.19

IMU #2
INS 5436.11 26.63 1.27

MAN 2664.19 0.27 0.73

IMU #3
INS 5604.69 25.8 1.24

MAN 2650.9 0.26 0.71

As indicated, as expected, the performance typically increases in terms of position and attitude estimation
using a better IMU above all switching from IMU#1 scaling factor of 50 times worse than IMU#2, which
represents an automotive grade IMU to IMU#2 (Baseline tactical grade IMU), to IMU#3 which has a scaling
factor of 1/1000 with respect to IMU#2, which is representative of an intermediate grade IMU. However, this
trend is not a severe for MAN approaches. That is, the performance remains fairly consistent for positioning,
even as the IMU degrades.

IV.C. UAV dynamic model quality with respect to truth

Finally, the sensitivity to the quality of the aerodynamic model was also investigated by perturbing the value
of the model coefficients with 10% and 20% error, respectively.
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Within Table 5 the attitude estimate that appears to not be influenced by these variations, however, the
position difference gets worse with deteriorating aerodynamic model. However, even at the worst evaluated
condition of 20% modeling errors, the integrated navigation is still better than the INS-along. As an example,
these results are shown for a single fight, within Figure 5.

Table 5: IMU sensor grades’ results

Position (m) Velocity (m/s) Attitude (deg)

Flight #1

INS 2857.34 26.26 1.28

truth MAN 3812.93 10.73 0.78

truth + 10% MAN 4298.88 12.75 0.77

truth + 20% MAN 4691.39 14.34 0.77

Flight #2

INS 1964.83 26.26 1.28

truth MAN 3503.28 10.62 0.83

truth + 10% MAN 4035.03 12.58 0.82

truth + 20% MAN 4456.09 14.12 0.81

Flight #3

INS 5761.41 25.85 1.21

truth MAN 2786.2 12.12 0.89

truth + 10% MAN 4936.7 15.17 0.87

truth + 20% MAN 4936.7 15.17 0.87

Flight #4

INS 5534.09 25.82 1.22

truth MAN 4489.31 11.25 0.82

truth + 10% MAN 4758.01 13.24 0.82

truth + 20% MAN 4990.07 14.79 0.83

Flight #5

INS 5604.81 25.79 1.24

truth MAN 2919.03 11.8 0.84

truth + 10% MAN 3940.19 13.57 0.83

truth + 20% MAN 5091.48 14.97 0.83

Figure 5: Position and attitude drifts related to the different aerodynamic models.

V. Conclusions

This sensitivity study confirm that considering a VDM model coupled with an UKF and combined with an
INS, we obtain a higher performance navigation system. VDM-only position, velocity and attitude solutions
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are improved, this approach lowers INS positing solution errors by one third to half over the 5 minute
simulated flights. The introduction of an airspeed sensor gives benefits in terms of velocity estimation as
the introduction of an altimeter does with position estimation (z-axis component in particular of course).
The scaled aerodynamic model influences the position more than the velocity solution. As expected, the
performance increases in terms of position and Attitude estimation using a better IMU, however when
used MAN, the impact is apparent for positioning. Future developments will involved the introduction in
the model of winds, gusts and turbulence. A study about how different maneuver sequences and flight
conditions affect the results of the proposed approach can be performed.
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